

HRWO Plan Change 1

Plan Change 1 does not address the many underlying issues to give effect to Te Ture Whaimana – the Vision and Strategy

This submission endeavours to provide an insightful perspective how the Gleeson family will be affected and how it will respond

Where we farm – Upper Waikato FMU, Karapiro subcatchment

Our response to Plan Change 1 as notified

Our solution(s) to provide a more equitable and fair process

I am a farmer...

Farming is purposeful, it is right and legitimate (within limits!)

Farming provides food and fibre, products that sustain and support us

As a farmer I manage the stewardship of natural resources recognising the environmental footprint extends beyond the farm property boundary I recognise the importance of ecosystem health and the constraints this applies to how I may farm in an integrated and balanced manner considering environment, cultural / social and economic well-beings

Farming Fits the Land

Upper Waikato FMU Land use change (recent)

Forestry to
 Intensive pastoralism

Encouraged by unbridled opportunity

- No regulatory oversight,
- Increasing milk price,
- The ETS price crash

Additional load to waterways?

Potential for increased environmental nuisance?

Change in Ecosystem Services – better or worse?

Change in flood water hydrographs

Who is culpable for the externalised cost

Perhaps more important who will pay?

Not forgetting adjustment in -

Greenhouse Gases and Biodiversity

Upper Waikato – Karapiro (Narrows) and Little Waipa Total Nitrogen and Total Organic Nitrogen What is the appropriate limit?

Major land uses in the catchment			
Land use	No. properties	Area (ha)	%age land use
Dairy	370	52887	34.3
Sheep, Beef, Deer	211	20434	13.2
Forestry	6	74711	48.4
Native bush	3	2881	1.9

Reference - An Assessment of the Benefits of Cleaner Streams: A New Zealand Case Study, 2010

Attributes, Limits and Objectives will need to be established for each subcatchment

Who should be culpable to reduce contaminant loss?

Farmers were encouraged to intensify increase milk supply – more cows

'Peak Cows' ??

Over-Allocation??

Unregulated opportunity to change land use intensity has created potential for environmental nuisance. Where was the necessary governance, checks & balances, due diligence to avoid the confrontation that now exists?

Livestock policy – High performance sheep and Breeding cows

Farming to the natural pasture growth curve Farming Fits the Land

Land type variable – Easy rolling to Steep sidlings

Land type variable – Easy rolling to Steep sidlings

Land type variable – Easy rolling to Steep sidlings

Mangare Stream – different flow conditions

Beef cow management – Winter forage crop and Rotational grazing

Beef cow riparian and steep land grazing management

Retiring pastoral land – planting indigenous and production trees

Steep sidling retirement and detention bunding

Summer dry – 5 year return? Resilience?

	Enterprise	N Loss Kg/ha
	Sheep + 20 month Bulls	16
	Existing – Dry Summer – No April N	17
	Sheep + Steers & Heifers	18
	Existing	19
	Existing – Dry Summer, April N	19
	Existing – Wet Summer, additional trade bulls	22
	Sheep + Dairy Heifers	20
	Dairy &Forestry(Maize on Feedpad) & Dry cow standoff May, June, July	32
	Dairy&Forestry (Maize in Paddocks)	35
	Dairy &Forestry(Maize on Feedpad)	35

Overseer modelling N loss results

Existing S&B farm system

S&B options flexibility range

Dairy conversion (with forestry)

19 kgN/ha

16 - 22 kgN/ha

35 kgN/ha

Sheep, Deer, Beef-cattle (mixed) Farm Systems Diverse, Different, Flexible and Complex

Plan Change 1 demonstrates no understanding of low N loss farm systems which require flexibility to be profitable

Low N loss farm systems of mixed land use requires juggling of livestock policies to achieve a good fit with the grass growth curve in conjunction with market demand and climate change

(Flexibility is not land use change nor change to a livestock policy that may be considered misplaced and / or marginal)

Nitrogen Allocation Framework – a proposal

Reducing Nitrogen Loss at source on farm to decrease the receiving environment load

Creating an allocation framework

(pastoral livestock <u>not</u> horticulture)

Acknowledge the natural resources of the farm and utilise this variability as a proxy

- Land LUC Class and inherent versatility and capability of the land to support livestock (grass growth curve livestock stocking rate limit)
- Understand effects of soil type, rainfall and attenuation buffering

(all precursors that impact N loss)

	Upper Waikato FMU								
Soil type – Pumice									
LUC		Slope							
	Rainfall								
	≤ 800mm	≤ 1000mm	≤ 1200mm	≤ 1400mm					
18.11	1500	1400	1300	1200	Flat				
Ш	1200	1100	1050	1000	Rolling				
IV	1000	900	850	800	Strongly rolling				
٧	-				-				
VI	800	750	700	650	Hill				
VII	600	550	500	450	Steep Hill				

Establish an interim target year – 2050

(3 plan changes to transition state of water quality improvement)

PC1	year 0 – 10 years	5 percent	
		improvement	
PC2	year 10 - 20	15 percent	
	years	improvement	Staged
PC3	year 20 - 30	25 percent	improvements
	years	improvement	

Livestock exclusion practicality

How to measure slope?

What is deemed the dominant slope?

80+ percent?

The contaminant loss risk from Hill country farms (with low intensive livestock policies) may be far greater from <u>Critical Source Areas</u> than from waterways.

Livestock exclusion above 15 degree slope

A pragmatic solution based upon risk and a strong desire to get some runs-on-the-board

Adopting Dairy accord waterway definition.

Parity with dairy stocking rates (cattle and / or deer)

Where the stocking rate for the farm or part of

≥ 18 su/ha or ~ 1000 kgLW /ha applied during

the winter period 1st May − 30th September

Note livestock exclusion will only be

applied on the farm or part of

above stocking rate threshold

