
 

 

 

 

 
Waikato Regional Council Internal Series 2022/09 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

E. coli trends in Waikato streams 
 
 

Exploration of drivers and alternative trend analysis 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
www.waikatoregion.govt.nz 
  



Prepared by: 
Simon Woodward, Sandy Elliott, Rob Davies-Colley and Rebecca Stott (National Institute of 
Water & Atmospheric Research Ltd (NIWA)) 
 
For: 
Waikato Regional Council  
Private Bag 3038 
Waikato Mail Centre 
HAMILTON 3240 
 
June 2022 
 
  
 
Document #: 23262691 
 

 



Doc # 23262691 Page i 

Disclaimer 
This internal series report has been prepared for the use of Waikato Regional Council as a reference 
document and as such does not constitute Council’s policy.  
 
Council requests that if excerpts or inferences are drawn from this document for further use by individuals 
or organisations, due care should be taken to ensure that the appropriate context has been preserved, 
and is accurately reflected and referenced in any subsequent spoken or written communication. 
 
While Waikato Regional Council has exercised all reasonable skill and care in controlling the contents of 
this report, Council accepts no liability in contract, tort or otherwise, for any loss, damage, injury or 
expense (whether direct, indirect or consequential) arising out of the provision of this information or its 
use by you or any other party. 
 
 
 
 
 





 
 

 

  
 

 

E. coli trends in Waikato streams 
Exploration of drivers and alternative trend analysis 

Prepared for Waikato Regional Council 

January 2022 

 
  

  



 
 
 

© All rights reserved. This publication may not be reproduced or copied in any form without the permission of 
the copyright owner(s). Such permission is only to be given in accordance with the terms of the client’s contract 
with NIWA. This copyright extends to all forms of copying and any storage of material in any kind of 
information retrieval system. 

Whilst NIWA has used all reasonable endeavours to ensure that the information contained in this document is 
accurate, NIWA does not give any express or implied warranty as to the completeness of the information 
contained herein, or that it will be suitable for any purpose(s) other than those specifically contemplated 
during the Project or agreed by NIWA and the Client. 

 

Prepared by: 
Simon Woodward 
Sandy Elliott 
Rob Davies-Colley 
Rebecca Stott 
 

For any information regarding this report please contact: 

Simon Woodward 
Water Quality Modelling Scientist 
Freshwater and Estuaries 
 +64 7 856 1717 
simon.woodward@niwa.co.nz 
 

National Institute of Water & Atmospheric Research Ltd 

PO Box 11115 

Hamilton 3251 

 

Phone +64 7 856 7026 

 

NIWA CLIENT REPORT No: 2021347HN 
Report date:   January 2022 
NIWA Project:   EVW21208 
 
 

Quality Assurance Statement 

 
Reviewed by: Neale Hudson 

 

Formatting checked by:  Carole Evans 

 
 
 

Approved for release by: Michael Bruce 

 

 
 



 

 

Contents 
 

Contents ............................................................................................................................. 3 

Tables ................................................................................................................................. 5 

Figures ................................................................................................................................ 5 

Executive summary ............................................................................................................. 8 

1 Introduction ............................................................................................................ 11 

1.1 Trends of concern for river water quality in the Waikato ...................................... 11 

1.2 Objective and scope ................................................................................................ 11 

1.3 Overview of this report ........................................................................................... 13 

2 E. coli as an indicator of faecal contamination .......................................................... 14 

3 Summary of factors expected to affect faecal contamination .................................... 15 

3.1 Sources of faecal contamination ............................................................................ 16 

3.2 Naturalised E. coli ................................................................................................... 17 

3.3 Modifiers of faecal contamination ......................................................................... 17 

3.4 Observed stream faecal contaminant concentrations ........................................... 19 

4 Trend analysis methods ........................................................................................... 20 

4.1 Traditional trend analysis approach (Sen slope) .................................................... 20 

4.2 Alternative trend analysis approach (GAM) ........................................................... 20 

5 Summary of types of data used ................................................................................ 23 

6 E. coli data ............................................................................................................... 24 

6.1 Water quality sites .................................................................................................. 24 

6.2 Data preparation ..................................................................................................... 27 

6.3 Data censoring and banding correction.................................................................. 29 

6.4 Data skew and outlier correction ........................................................................... 30 

6.5 Effect of change in sampling frequency .................................................................. 31 

7 Factors related to faecal pollution trends, and relationships to E. coli  

concentrations ......................................................................................................... 32 

7.1 Water quality variables other than E. coli .............................................................. 32 

7.2 Air temperature and rainfall ................................................................................... 33 



 

 

7.3 Livestock density ..................................................................................................... 38 

7.4 Land use area .......................................................................................................... 42 

7.5 Fencing .................................................................................................................... 43 

7.6 Point source discharges .......................................................................................... 43 

7.7 Flow ......................................................................................................................... 43 

8 Estimation of E. coli trends ....................................................................................... 48 

8.1 Time window selection ........................................................................................... 48 

8.2 Traditional methods (based on Sen slope) ............................................................. 49 

8.3 Alternative methods (based on GAM) .................................................................... 49 

8.4 Uncertainty, significance and strength of evidence ............................................... 52 

8.5 Example 1 (Waihou River at Whites Road, no flow data) ....................................... 53 

8.6 Example 2 (Waitoa River at Landsdowne Road, flow data) .................................... 57 

8.7 E. coli trends for all sites ......................................................................................... 63 

8.8 E. coli trends by subregion ...................................................................................... 75 

8.9 E. coli trends overall summary ................................................................................ 75 

8.10 Comparison of GAM Models................................................................................... 81 

9 Turbidity and visual clarity trends in relation to E. coli trends .................................... 83 

9.1 Waihou and Waitoa examples ................................................................................ 83 

9.2 Trends for all sites and summary ............................................................................ 88 

10 Interpretation of E. coli trends ................................................................................. 90 

10.1 Livestock density ..................................................................................................... 90 

10.2 Land use and regional variations ............................................................................ 92 

10.3 Point sources........................................................................................................... 92 

10.4 Fencing……………………………. ..................................................................................... 95 

11 Discussion ............................................................................................................... 96 

12 Conclusion ............................................................................................................... 98 

13 Supplementary material ........................................................................................ 100 

14 Acknowledgements ............................................................................................... 101 

15 Glossary of abbreviations and terms ...................................................................... 102 

16 References ............................................................................................................. 104 



 

 

Appendix A Handling of censored values ........................................................... 111 

 

 

Tables 
 

Table 1: Categorisation of sources and modifiers affecting faecal contamination,  
with notes. 15 

Table 2: List of water quality monitoring sites analysed in this study (N = 82). 25 

Table 3: Intergovernmental Panel on Climate Change likelihood categories (from 
McBride, 2019). 52 

Table 4: Explanation of statistics included in the trend plots. 55 

Table 5: Summary of Waikato E. coli trends (%/year) assessed using Thiel-Sen  
analysis. 78 

Table 6: Summary of Waikato E. coli trends (%/year) assessed using GAM analysis. 80 

 
 

Figures 
 

Figure 1: E. coli state and trends in the Waikato-Waipa catchment (2015-2019), as 
assessed by LAWA (Land, Air, Water Aotearoa). 12 

Figure 2: Summary of anthropogenic and natural factors that affect E. coli 
concentrations and trends. 19 

Figure 3: Map of the Waikato Region showing WRC water quality and flow site  
locations, as well as major point source discharges. 24 

Figure 4: Raw E. coli data at 82 WRC SOE sites. 28 

Figure 5: Annual median E. coli concentration (CFU/100 mL) at 82 WRC SOE sites. 29 

Figure 6: Raw E. coli data at Waikato River at Taupo Control Gates (site 1131_127). 30 

Figure 7: Distribution of optimal Box-Cox lambda values used to transform E. coli  
data at the 82 WRC sites used in this study. 31 

Figure 8: Correlation between E. coli and other water quality variables. 33 

Figure 9: Correlation between E. coli and turbidity at all 82 WRC SOE sites. 34 

Figure 10: Correlation between E. coli and visual clarity at the 79 WRC SOE sites that  
had clarity data. 35 

Figure 11: Correlation between E. coli and VCSN daily catchment rainfall (mm). 36 

Figure 12: Correlation between E. coli and VCSN catchment daily average  
temperature (°C). 37 

Figure 13 Catchment annual total rainfall (mm) (top) and annual average  
temperature (°C) (bottom) for the 82 WRC SOE sites. 38 

Figure 14: WRC (AgriBase) livestock density data (SU/ha). 39 

Figure 15: Correlation between long term E. coli and WRC (AgriBase) livestock  
density (SU/ha). 40 

Figure 16: CLUES (LCDB) land use data, showing proportional area of six types of  
land use in each of the 82 catchments. 41 

Figure 17: Correlation between E. coli and CLUES (AgriBase/LCDB3) land use area. 42 



 

 

Figure 18: Changes in proportions of fenced streambank adjacent to drystock  
(sheep-beef) pastures, across subregions and stream orders. 44 

Figure 19: Changes in proportions of fenced streambank adjacent to dairy pastures, 
across subregions and stream orders. 45 

Figure 20: Correlation between E. coli concentrations at stream monitoring sites and  
total upstream point source yield. 46 

Figure 21: Annual average flow (m3/s) at 38 WRC flow sites. 46 

Figure 22: Correlation between E. coli and flow (m3/s) at a nearby flow gauge. 47 

Figure 23: Trends and 5-year changes in E. coli concentrations for the Waihou River  
at Whites Road (no adjustment). 56 

Figure 24: Trends and 5-year changes in E. coli concentrations from the Waihou  
River at Whites Road (seasonal adjustment). 56 

Figure 25: Trends and 5-year changes in E. coli concentrations from the Waihou  
River at Whites Road (seasonal, rain and temperature adjustment). 57 

Figure 26: GAM residuals and model terms for E. coli at Waihou River at White’s  
Road (seasonal, rain and temperature adjustment). 59 

Figure 27: Trends and 5-year changes in E. coli concentrations from the Waitoa  
River at Landsdowne Road (no adjustment). 60 

Figure 28: Trends and 5-year changes in E. coli concentrations from the Waitoa  
River at Landsdowne Road (flow adjustment). 60 

Figure 29: GAM residuals and model terms for E. coli at Waitoa River at Landsdowne 
Road (flow adjustment). 61 

Figure 30: Trends and 5-year changes in E. coli concentrations from the Waitoa  
River at Landsdowne Road (seasonal and flow adjustment). 62 

Figure 31: Trends and 5-year changes in E. coli concentrations from the Waitoa  
River at Landsdowne Road (seasonal, flow, rain and temperature  
adjustment). 62 

Figure 32: Trends and 5-year changes in E. coli concentrations from the Waitoa  
River at Landsdowne Road (seasonal, rain and temperature adjustment). 63 

Figure 33: Five-year trends in E. coli concentration (% increase/year) in the Waikato  
River and regional streams according to subcatchment groupings. 73 

Figure 34: Summary of statistical significance of GAM covariate terms. 74 

Figure 35: Summary of 5-year trends in E. coli concentration (% increase/year) by 
subregion (Thiel-Sen Slope Estimator). 76 

Figure 36: Summary of 5-year trends in E. coli concentration (% increase/year) by 
subregion (GAM). 77 

Figure 37: Map of 2015-2019 E. coli trends (%/year) assessed using Thiel-Sen  
analysis (with seasonal adjustment). 79 

Figure 38: Map of 2015-2019 E. coli trends (%/year) assessed using a GAM model 
(seasonal, rain and temperature adjustment). 81 

Figure 39: Comparison of model fit to E. coli data (NSE) for the GAM models with 
different covariates. 82 

Figure 40: Trends and 5-year changes in Turbidity from the Waihou River at Whites  
Road (seasonal, rain and temperature adjustment). 84 

Figure 41: Trends and 5-year changes in visual clarity from the Waihou River at  
Whites Road (seasonal, rain and temperature adjustment). 84 



 

 

Figure 42: Trends and 5-year changes in Turbidity from the Waitoa River at  
Landsdowne Road (seasonal, rain and temperature adjustment). 85 

Figure 43: Trends and 5-year changes in Visual Clarity from the Waitoa River at 
Landsdowne Road (seasonal, rain and temperature adjustment). 85 

Figure 44: Summary of 5-year trends in Turbidity (% increase/year) by subregion  
(GAM). 86 

Figure 45: Summary of 5-year trends in Visual Clarity (%/year) by subregion (GAM). 87 

Figure 46: Map of 2015-2019 Turbidity trends (%/year) assessed using a GAM model 
(seasonal, rain and temperature adjustment). 88 

Figure 47: Map of 2015-2019 Visual Clarity trends (%/year) assessed using a GAM  
model (seasonal, rain and temperature adjustment). 89 

Figure 48: E. coli “raingam” trend estimates from Figure 36 against median livestock 
density (stock units per hectare). 91 

Figure 49: E. coli “raingam” trend estimates from Figure 36 against 5-year percent  
change in livestock density (stock units per hectare). 91 

Figure 50: E. coli “raingam” trend estimates from Figure 36 against land use type  
and fraction of catchment area. 94 

Figure 51: Comparison of methods for handling censored data in trend analysis. 112 

 
 

 
 
 



 

8 E. coli trends in Waikato streams 

 

Executive summary 
Routine monitoring of concentrations of the microbial indicator Escherichia coli across the Waikato 

region between 2008 and 2017 indicated that faecal contamination of streams and rivers was 

generally decreasing (important improvements were identified at 16 out of 114 sites over time 

compared with important deteriorations at only 4 sites; Vant, 2018). These positive trends may have 

been due to efforts made to reduce the impact of land use on water quality, such as limiting pastoral 

intensification, improving effluent management, and excluding stock from waterways by fencing.  

More recent monitoring of Waikato streams (2015-20191), however, indicates that concentrations of 

E. coli are increasing at most river monitoring sites, indicating a deterioration in water quality. For 

example, data downloaded from https://www.lawa.org.nz (LAWA— Land, Air, Water Aotearoa) on 

10 March 2021 indicated that in the five year period 2015-2019, E. coli concentrations were 

decreasing at three of 70 sites (4%) in the Waikato-Waipa catchment, increasing at 59 sites (84%), 

and indeterminate or not assessed at 5 sites (12%). This situation is of concern to Waikato Regional 

Council (WRC) given the effort expended in policy development and implementation, and the 

expense that farmers have incurred to meet regional plan requirements.  These reported trends are 

also of concern considering the requirements of the National Policy Statement for Freshwater 

Management (NPS-FM) 2020, which requires councils to ensure river water quality meets or exceed 

threshold attribute values (thereby enhancing water quality, including recreational water quality, 

over time). 

Waikato Regional Council (WRC) wish to better understand the cause(s) of the apparent 

deteriorating trend in microbial water quality across the region, and commissioned NIWA to 

undertake a desktop assessment of historical data and provide advice.  NIWA was tasked with:  

▪ Assessing trends in microbial water quality across the entire Waikato Region over the 

preceding 25-year period, with emphasis on the most recent 10- and 5-year periods.  

▪ Trend assessment was to use standard best-practice trend assessment methods, as 

well as alternative modelling approaches.  

▪ Within the limits imposed by available data, these assessments were intended to 

determine:  

− which factors (including rainfall, streamflow, temperature, solar radiation, climate 

variability, livestock density, land use and point source discharges) were 

responsible for recently observed trends in E. coli concentrations, and  

− their relative contribution to these trends.  

▪ There was also interest in examining the relationship between E. coli and other water 

quality variables – turbidity and visual clarity – which are often advocated as proxy 

measurements for E. coli.  

Trends in E. coli concentrations in Waikato streams were analysed using the traditional Thiel-Sen 

method, as well as Generalized Additive Model (GAM) approaches. The 82 Waikato Regional Council 

monitoring sites where sufficient data were available comprised ten sites along the Waikato River 

mainstem and 72 regional stream sites.  

 
1 The period denoted by ‘2015-2019’ covers the 5-year period from the start of 2015 to the end of 2019. 

https://www.lawa.org.nz/
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Using both the Thiel-Sen and GAM methods, E. coli trends were estimated for four consecutive 5-

year periods: 2000–2004, 2005–2009, 2010–2014 and 2015–2019. These periods correspond to the 

periods of interest, the period of available data, the periods reported by LAWA, and allow 

straightforward comparison between analysis methods. The effects of month (season), flow, water 

temperature, air temperature and rainfall were explored as possible explanatory variables.  

Both approaches used for trend analysis confirmed that, after generally decreasing trends were 

observed in 2010–2014, E. coli concentrations have increased at most monitoring sites in the 2015–

2019 period over a wide range of catchment characteristics and E. coli concentrations. For example, 

GAM analysis indicated that E. coli likely decreased at 39 (48%) and increased at 15 (18%) of 82 sites 

in 2010-2014, but decreased at 7 (9%) and increased at 60 (73%) of the same sites in 2015-2019 

(after adjusting for season, temperature and rainfall). The unadjusted median rate of change was -1% 

per year in the 2010-2014 period compared with +6% per year in the 2015–2019 period (GAM 

method results). Changes in flow, water temperature, air temperature and rainfall at or prior to the 

time of sampling did not account for the observed increasing trend — if fact, after correcting for 

these variables, the median trend was estimated to be -2% per year in the 2010-2014 period and 

+7% per year in the 2015-2019 period. 

The increases in E. coli concentrations were not significantly correlated with changes in livestock 

density or land use, and were of similar relative magnitude in predominantly pastoral, forested, or 

urban catchments. The increase in faecal contamination occurred in streams across all major land 

uses in the Waikato region, including native and plantation forest, making it unlikely that the general 

trend is related to management actions on livestock farms. Ongoing improvements in stock exclusion 

on pastoral farms continued in the 2015-2019 period.  Although the input of faecal contaminants to 

streams was expected to decrease through these efforts, increased concentrations were observed 

across the region. The increases in E. coli concentration were unlikely to be related to changes in 

point source discharges (wastewater treatment plants or dairy sheds); previous investigations 

indicated that point sources make a small contribution to the contaminant load measured at most 

stream monitoring sites. The load discharged from these point sources is also expected to decrease 

over time rather than increase because of improvements in wastewater treatment.  

Increases in the extent of stream shading arising from riparian protection programmes have been 

small over the recent period, so reductions of solar radiation (and light-induced disinfection) were 

likely to be small or negligible, and unlikely to explain the increase in E. coli concentrations observed.  

Turbidity  and visual clarity  – often considered as proxies for E. coli because of co-mobilization of fine 

particles and faecal matter – did not show similar direction of trend in water quality to E. coli, 

according to the GAM analysis after adjustment for season, temperature and rainfall. Turbidity likely 

improved at 45 of 82 sites (55%) in the 2015-2019 period  and visual clarity likely improved at 31 of 

75 sites (41%), whereas there was widespread deterioration in microbial water quality over the same 

period. 

Using the data and information available, we were unable to identify causes of the recent increases 

in E. coli concentrations in Waikato streams.  

We have identified several areas where further investigation may help explain the trend of increasing 

E. coli concentrations; these include: 

▪ Undertaking a similar exercise using data from other regions to see whether recent 

increases in concentrations of faecal bacteria is Waikato-specific, or a more 
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widespread phenomenon. National data has already been collected by LAWA and will 

be published in an upcoming update to the previous Ministry for the Environment 

report (i.e., Larned et al., 2019). 

▪ Refining the statistical models developed in this project to address long-term, gradual 

variations in temperature as a specific covariate. 

▪ Including the effects of solar radiation in extended models. 

▪ Reviewing the literature to identify whether naturalised populations of E. coli, or other 

strains of microbe that are not of faecal origin but are enumerated in the E. coli 

analysis, could be involved with recently observed trends. 

▪ Reviewing the scientific literature to identify whether temperature changes (related to 

climate change) may influence the growth of organisms in faecal matter in pastures 

and in riparian areas, as well as in naturalised populations, thereby increasing E. coli 

concentrations in surface waters. 

▪ Although highly unlikely to be the cause of the observed trend, for completeness we 

suggest a desktop review of sample collection, storage and analysis procedures used 

by WRC; this would be done to identify factors that might have a systematic effect on 

measured microbial concentrations and apparent trends. 
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1 Introduction 

1.1 Trends of concern for river water quality in the Waikato 

As part of their ongoing State of the Environment (SOE) reporting, Waikato Regional Council (WRC) 

regularly assesses state and trends in water quality indicators in Waikato rivers. This includes 

measuring concentrations of Escherichia coli (E. coli), an indicator of micro-organisms of faecal origin. 

E. coli concentrations are reported as colony-forming units (CFU) per 100 millilitres of water 

(CFU/100 mL).  While E. coli are not generally pathogenic (disease-causing), they are correlated with 

pathogenic organisms such as Campylobacter which do have human health implications (McBride et 

al. 2020). Sections 3.18 to 3.20 of the National Policy Statement for Freshwater Management 2020 

(NPS-FM 2020, New Zealand Government, 2020) require analysis of trends in water quality, and if 

deteriorating trends are detected, the cause of the trend must be investigated. If the trend is the 

result of other than naturally occurring processes, then steps must be taken to halt or reverse the 

degradation.  

A period of declining E. coli concentrations was observed in Waikato rivers during 1993-2017 (Vant et 

al. 2018), matching the national trends for the 1998-2017 period reported by Larned et al. (2019). 

However, recent monitoring (2015-2019) of microbiological water quality appears to show increasing 

E. coli concentrations in many Waikato catchments, indicating a deterioration in water quality. This 

deterioration is shown in Figure 1, which is an excerpt from the state and trend analysis carried out 

by LAWA (Land, Air, Water Aotearoa) for Waikato-Waipa monitoring sites for the 2015-2019 period 

using the Mann-Kendall Slope Test (LAWA, 2021a; https://www.lawa.org.nz/explore-data/waikato-

region/river-quality). State is indicated by colour (e.g., blue = best/lowest 25% of sites) and five-year 

trend by a white arrow (e.g., downward = deteriorating = increasing E. coli concentrations). The 

analysis summarised in this figure indicated that E. coli concentrations were decreasing (water 

quality was improving) at 3 of 70 sites (4%), concentrations were increasing at 59 sites (84%), and 

were indeterminate or not assessed at 8 sites (12%). These trends occurred despite increased efforts 

to improve land use practices, such as restricting livestock access to waterways (reference to regional 

plan). Given the effort that farmers have made to meet regional plan requirements and considering 

the requirements of the NPS-FM 2020, WRC are interested in better understanding the cause(s) of 

the apparent deteriorating trend in microbial water quality across the region. 

1.2 Objective and scope 

WRC requested advice from NIWA as to why E. coli concentrations are apparently increasing, 

including statistical considerations and the potential influence of causal factors. The time period of 

interest for this analysis is the last 25 years, especially the last 10- and 5-year periods. The spatial 

area of interest is the entire Waikato Region. 

To answer this question, we considered multiple possible causes of water quality trends, including 

rainfall, streamflow, temperature, solar radiation, climate variations (SOI, Southern Oscillation 

Index), livestock density, land use and point source discharges (Donnison et al. 2008; Harmel et al. 

2010; Figure 2). Available stocking rate, land use and point source information were provided by 

WRC (described below). 

https://www.lawa.org.nz/explore-data/waikato-region/river-quality
https://www.lawa.org.nz/explore-data/waikato-region/river-quality
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There was also interest in examining the relationship between E. coli and turbidity and visual clarity 

as potential proxy measurements. These variables are amenable to continuous monitoring, and 

visual clarity is also strongly related to swimming quality (Davies-Colley et al. 2018; New Zealand 

Government, 2020).  

 

 

Figure 1: E. coli state and trends in the Waikato-Waipa catchment (2015-2019), as assessed by LAWA 
(Land, Air, Water Aotearoa). Figure downloaded from https://www.lawa.org.nz on 10 May 2021. Marker 
colour indicates state, i.e., quartiles of 5-year median E. coli concentration (blue = best/lowest 25%, green = 
best/lowest 50%, orange = worst/highest 50%, red = worst/highest 25%, white = insufficient data). White 
arrows indicate trends, upward = improving (declining E. coli concentrations), wiggly = indeterminate, 
downward = deteriorating (increasing E. coli concentrations), none = not assessed. The larger circle is the site 
that was selected at the time the figure was downloaded. Note the prevalence of downward arrows, indicating 
predominance of sites with deteriorating water quality (increasing E. coli concentrations).  

 

https://www.lawa.org.nz/
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1.3 Overview of this report 

This report is structured as follows: 

▪ Section 2 describes E. coli and its use as an indicator. 

▪ Section 3 summarises current scientific understanding of the biological and physical 

causes of faecal contamination of surface waters (particularly by E. coli), with emphasis 

on factors that may cause trends.  

▪ Section 4 briefly describes the current “best-practice” statistical trend analysis method, 

as well as an alternative method that was selected as being more appropriate for the 

current study. 

▪ Section 5 lists the water quality, catchment and environmental data used in the study. 

▪ Section 6 describes the E. coli data in greater detail, including data collation and 

processing steps, and the location of sample sites. 

▪ Section 7 describes data that were investigated to explain observed E. coli trends, and 

correlations with E. coli concentrations are examined. 

▪ Section 8 describes the E. coli trend analysis method in detail and presents the results 

for individual catchments and subregions. 

▪ Section 9 compares the E. coli trend results with trends of turbidity and visual clarity, 

and assess their value as proxy measurements for E. coli. 

▪ In Section 10 E. coli trend results are interpreted using in environmental and land use 

factors as potential explanatory variables.  

▪ Finally, potential explanations for the observed E. coli trends are discussed in Section 

11. 
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2 E. coli as an indicator of faecal contamination 
E. coli bacteria are naturally present in the gut (and hence faeces) of a wide range of animals (e.g., 

birds, livestock, wildlife, humans, domestic pets). The presence of E. coli in water is therefore 

considered an indicator of faecal contamination, and E. coli are referred to as “faecal indicator 

bacteria” (FIB). Although most E. coli strains are non-pathogenic, the presence of E. coli is indicative 

of the potential presence of enteric (‘gut’) pathogens, which are of public health concern.  

To manage the health risks to communities and individuals exposed to contaminated water and to 

safeguard human health for recreational and cultural use of waters, tolerable levels of E. coli in 

freshwater are defined in New Zealand Microbiological Water Quality Guidelines for Marine and 

Freshwater Recreational Areas (MFE and MOH, 2003) and the National Policy Statements for 

Freshwater Management 2020 (NPS-FM 2020, New Zealand Government 2020). Defined threshold 

levels of E. coli depend on whether monitoring is being used to check the suitability of water for 

recreational use (surveillance monitoring), or if monitoring is being undertaken for longer term 

grading of microbiological water quality.  

Surveillance monitoring entails weekly sampling of water from a recreational site and comparing E. 

coli concentrations in these single samples with MFE and MOH (2003) guideline values of E. coli 

levels acceptable for primary contact (e.g., swimming). These data may also be used to meet the 

requirements of the NPS-FM 2020 (Section 3.27 and Table 22 of that document). Grading of water is 

based on analysis from multiple samples taken over an extended period and using statistical metrics 

(e.g., median, 95th percentile values) to categorise a water body into various grades or attribute 

states according to grading criteria.  

Monthly water samples collected for SOE monitoring, are used for grading purposes and to 

understand progress towards desired environmental outcomes and reporting against national 

microbiological water quality objectives defined in the NPS-FM 2020. WRC also use the SOE 

monitoring results for E. coli (and visual clarity) to provide a grading assessment of whether a site is 

excellent, satisfactory or unsatisfactory for swimming. For WRC sites, water is considered unsuitable 

for swimming if the 95th percentile exceeds 550 E. coli per 100 millilitres of water because of the 

potential elevated health risks. 

E. coli are measured as colony forming units (CFU) or most probable number (MPN) per 100 millilitres 

of water (CFU/100 mL or MPN/100 mL respectively) reflecting the different types of culture-based 

methods used for enumeration. The detection limit will depend on the volume of water analysed but 

is generally a minimum of 1 E. coli / 100 mL if 100 mL of water is analysed (or 10 E. coli / 100mL if 10 

mL water is analysed etc.,). The WRC uses the CFU method, which is based on filtering a sample of 

water and counting cultures on the filter after incubation. 
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3 Summary of factors expected to affect faecal contamination 
Following review of major review articles and NZ research (e.g., Collins et al. 2007; Hipsey et al. 2008; 

Bradford et al. 2013; Pandey et al. 2014), we identified and summarised key factors that affect 

concentrations of microbial indicators in freshwater, shown in Table 1 and Figure 2. Here we give a 

brief overview of these factors, divided into “sources” and “modifiers”.  The influence of soils or 

topography is not considered, because they are fixed over time. 

Table 1: Categorisation of sources and modifiers affecting faecal contamination, with notes. 

Source/modifier Notes on effects Expected relation to 
trends 

Land use (source) Land use affects the source of faecal material. Urban land uses 
contribute faecal pollution from domestic and feral animals 
(defecating on streets and roofs) as well as human sources (e.g., 
sewer leaks, wastewater plant discharges). Pastoral land uses 
contribute faecal pollution mainly from livestock, including dairy 
parlour washings via treatment ponds or land irrigation. Feral 
animals, and birds are important in all land uses, and septic tanks 
with onsite disposal systems may be significant in rural land. 
Plantation and conservation forests typically contribute far less 
faecal pollution (principally from feral mammals and birds). 

Changes from forest to 
intensive land use such 
as pasture and urban, 
or increases in domestic 
or feral animal 
populations, are 
expected to increase 
concentrations in 
freshwater. 

Point sources 
(source) 

Municipal and industrial discharges can influence microbial 
concentrations. Improved wastewater treatment reduces 
loading to freshwater. Historically, dairy-shed wastewater was a 
significant contributor to stream microbial contamination, but 
direct discharges to streams are now relatively rare.  

Reductions in discharge 
and improved 
treatment will decrease 
concentrations. 

Livestock access 
to waters 
(source/modifier) 

Livestock access to stream channels and wetlands in pasture 
greatly increases faecal contamination (in all states of flow) by 
direct faecal deposition. Restricting stock access, particularly by 
riparian fencing/livestock exclusion, eliminates direct faecal 
deposition (by cattle in particular) and reduces wash-in from 
riparian zones. 

Stock exclusion is 
expected to decrease 
concentrations.  

Rainfall 
(modifier) 

In rural areas, rainfall mobilises faecal deposits on land and some 
of this faecal material may reach channels in overland flow, 
although much is intercepted by vegetation or soils on 
infiltration. Heavy rainfall may also lead to sewage overflows. 
Rainfall also drives streamflow (see below). In urban areas, 
heavy rainfall may also lead to sewage overflows. 

Increased rainfall 
increases losses of 
microbes and increases 
stream flow, which is 
likely to increase 
concentrations. 

Streamflow 
(modifier) 

Faecal pollution usually correlates positively with streamflow 
because overland flow can wash-in faecal matter from land, and 
accelerating currents on the rising limb of the hydrograph can 
mobilise in-channel stores of faecal microbes. The latter are 
notably from the hyporheic zone, but also from biofilms on in-
stream surfaces such as aquatic plants, and entrainment of 
faecal matter deposited in riparian areas that are inundated.  

 

Increased stream flow 
likely to increase 
concentrations. 
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Temperature 
(modifier) 

Faecal pollution relates complicatedly to temperature. 
Temperature increase increases rates of reaction, which includes 
both E. coli die-off processes and E. coli growth rate (in 
environmental reservoirs). For example, with increase in 
temperature E. coli growth rate increases in (freshly-deposited) 
dung deposits within which bacteria are buffered from die-off, 
but E. coli die-off rate increases where the bacteria are exposed 
to various environmental stressors and/or predation. 

Unclear: positive and 
negative influences. 

Sunlight 
exposure 
(modifier) 

Faecal pollution usually correlates negatively with sunlight 
exposure owing to the powerful disinfecting properties of 
(mainly UV wavelengths in) solar radiation. Several mechanisms 
of sunlight action affect E. coli simultaneously, including direct 
DNA damage by UVB (skin-burning) wavelengths in sunlight and 
indirect damage by strongly oxidizing species produced photo-
chemically by UV and blue-visible wavelengths, both within 
bacterial cells and externally.  

Increased sunlight 
expected to reduce 
concentrations. 
Increased shading by 
riparian vegetation 
could increase shading 
and increase 
concentrations. 

3.1 Sources of faecal contamination 

The ultimate source of faecal contamination of waters is the faeces of warm-blooded animals, both 

mammals and birds (Soller et al. 2010; Moriarty et al. 2011; Moriarty, 2015). Some land uses 

intrinsically involve large densities of humans (urban land use) or livestock (pastoral land use) and are 

thus important sources of faecal pollution (Schreiber et al. 2015). Wildfowl may also contribute to 

faecal pollution in rural catchments. Birds and feral mammals are typically the only sources in forest 

land, which explains why E. coli concentrations are relatively low in streams draining forest. In areas 

of urban land use, wastewater treatment usually controls human faecal pollution, but sewer leaks 

and overflows during rainstorms may cause faecal pollution of waters. 

Faecal pollution of waters strongly reflects land use and densities of warm-blooded animals and birds 

(Kay et al. 2008). Mammals generally have greater significance to the human health risk of surface 

waters than birds (including waterfowl that can sometimes cause intense local water contamination), 

because mammalian faeces have a higher prevalence of pathogenic organisms likely to infect 

humans than bird faecal matter (Soller et al. 2010).  

Point sources can make a significant contribution to microbial indicator concentrations in streams, 

especially when the discharge is inadequately treated and/or discharge occurs into a small stream. 

Over time the treatment of municipal wastewater has improved, and land application has been 

introduced in many cases, factors which have reduced stream microbial concentrations. In addition, 

historical discharge of treated dairy shed waste directly into streams has largely been replaced by 

land application (Wilcock et al. 2013).   

Cattle are attracted to water and stock access to stream channels causes considerable faecal 

pollution, due to direct defaecation in the stream, plus wash-off of faeces from riparian areas. 

Fencing of channels has been demonstrated to greatly reduce faecal pollution of streams in pastoral 

catchments (Bragina et al. 2017; Kay et al. 2018).  

Faecal pollution of streams draining forest land, including plantation forest as well as native forest, is 

generally relatively low and can be attributed mainly to feral animals and birds (Donnison and Ross, 

1999). For example, faecal pollution of the Waihaha River on the western shore of Lake Taupo, which 

has a catchment almost entirely in native and exotic forest, is very low (median E. coli c. 10 CFU/100 

mL from 23 years of WRC sampling). 
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Statistical and mass balance modelling in the Waikato Region has identified that pastoral areas are 

associated with higher microbial loads and concentrations in streams, although Hamilton City was 

also associated with high loading (Semadeni-Davies et al. 2015, 2016). A recent analysis of national 

data showed that stream catchments with predominantly urban land cover had worse microbial 

quality than pastoral catchments, which were in turn had worse microbial water quality than 

forested catchments (LAWA, 2021b).  

Waterfowl can sometimes be the dominant source of faecal pollution, but this source has 

comparatively lower health risk compared, say, to cattle pollution (Soller et al. 2010). However, 

contamination of water by avian faeces may still represent a potentially substantial human health 

risk (Wood et al. 2018). 

3.2 Naturalised E. coli 

The assumption that E. coli are exclusively found in the gut of animal hosts has been increasingly 

challenged by the recognition of environmentally-adapted (“naturalised”) E. coli populations (derived 

from aged faecal material, as well as non-enteric “E. coli-like” strains) (Byappanahalli et al. 2006; Ishii 

et al. 2006; Devane et al. 2020). These strains are tolerant to a range of environmental conditions  

(Perchec-Merien and Lewis, 2012) and are able to persist and grow in conditions of low temperature 

(e.g., >7°C) and limited nutrient availability (Berthe et al. 2013;  Byappanahalli et al. 2003).  If 

environmental conditions are becoming more conducive to survival of naturalised populations, then 

concentrations of E. coli could increase; this is an area of current research (Devane et al. 2020). 

In New Zealand,  persistent environmental strains reported in water and sediments have been 

identified as either belonging to several phylogroups of enteric E. coli derived from aged faecal 

material, or Escherichia species not derived from faecal material but which are “E. coli-like”  (Devane, 

2019). Both types of environmentally-adapted strains can numerically dominate in water (Devane, 

2019), however, they cannot be discriminated from E. coli arising from recent faecal deposition using 

culture-based enumeration methods.  

Sediments may act as a habitat for environmentally persistent strains from which strains may 

transfer to the water column (Devane, 2019). In river systems, microbes in sediment reservoirs may 

be resuspended into the water column following disturbance during high flow events. Microbes from 

these sources may also be entrained under baseflow conditions by hyporheic exchange across the 

water/sediment interface.  

The presence of environmentally adapted aged-enteric and non-enteric strains may confound the 

use of E. coli  as a faecal indicator and use of this organism for assessment of faecal contamination in 

rivers. We also speculate that increases in measured indicators may be related to changes in 

environmental conditions that favour environmentally-adapted strains, rather than changes in fresh 

enteric sources. The health implications of these strains is currently unknown. 

3.3 Modifiers of faecal contamination 

Factors that increase or decrease faecal pollution of waters include: mobilisation and transport of 

faecal matter (e.g., rainfall and consequent streamflow), inactivation or immobilisation of faecal 

microbes (e.g., sunlight, hyporheic uptake and deposition), or dilution. 

Faecal microbial contaminants reach waterways through several pathways, including direct 

deposition, effluent discharges and surface runoff (Collins et al. 2007).  
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E. coli concentrations often correlate positively with rainfall because of four phenomena:  

1. Rainfall generates overland flow, entraining faecal matter from dung deposits, resulting in 

some faecal bacteria reaching channels.  

2. Increased rain increases flow through artificial drains which can be an important flow pathway 

for microbes (e.g., Monaghan et al. 2007).  

3. Rainfall increases streamflow, and the currents on the rising limb of the resulting hydrograph 

can entrain E. coli from in-channel stores such as biofilms on surfaces of aquatic plants and 

pore water within streambed sediments (i.e., the hyporheic zone).  

4. Faecal material previously deposited in riparian zones may be mobilized into the flow following 

inundation of the riparian zone.  

On the other hand, rainfall may dilute inputs from point sources, reducing their contribution to 

observed concentrations, although we expect this effect to be minor given the predominance of non-

point sources in the Waikato region.  

Riparian buffers are generally expected to reduce concentrations of microbial indicators, because 

they promote infiltration of surface runoff and help exclude stock from wet riparian areas prone to 

runoff. There is little direct experimental evidence of effectiveness of riparian buffers at catchment 

scale (apart from stream stock exclusion effects), and estimates of their effectiveness are variable 

(e.g., Muller and Stephens 2021). However, extensive riparian restoration in Taranaki was associated 

with significant reductions in E. coli concentrations (Graham et al. 2018). Similarly, we would expect 

improved microbial water quality in the Waikato with increasing riparian restoration (Norris et al., 

2020). 

Survival of E. coli (on land and in water) is influenced by both abiotic factors (e.g., temperature, UV 

radiation in sunlight) and biotic factors (e.g., effects of grazing from bacterivorous predators). A 

negative correlation of E. coli survival with temperature is often reported from experimental and 

statistical studies (e.g., see summary in Hipsey et al. 2008; Vermeulen and Hofstra, 2014), although 

the relationship is complicated by E. coli growth rates which increase with temperature in the range 

of 20°C–~35°C (Ratkowsky et al. 1983). Under fluctuating environmental conditions, gross bacterial 

die-off will occur if the die-off rate exceeds the growth rate. Increased die-off at higher temperatures 

may also be attributable to faster growth rates of bacterial predators (in particular free-living 

protozoa) increasing proportionally with temperature up to an optimum (McCambridge and 

McMeekin, 1980; Geller, 1993; Davies et al. 1995) and to competition with indigenous bacteria for 

limited nutrient resources (Craig et al. 2004).  

Sunlight is a powerful bactericide (Nelson et al. 2018), and several mechanisms of sunlight action 

occur simultaneously, mostly related to the ultraviolet (UV) content of sunlight. Recognising the 

powerful disinfecting action of sunlight suggests a potential downside of riparian planting and 

increased stream shade, namely reduced sunlight disinfection of stream water. However, the 

negative effect of this mechanism is probably outweighed by positive effects of riparian restoration 

on microbial water quality, such as reduced stock access and increased infiltration in riparian areas 

(see earlier discussion of riparian buffers). Overall we expect reduced microbial contamination in 

riparian-restored streams. 
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3.4 Observed stream faecal contaminant concentrations 

In addition to the sources and modifiers of faecal contamination already discussed, in-stream 

concentrations are also affected by hydrological transport processes including wash-off during rain 

events, drain discharge and dilution from groundwater discharge, and finally measured 

concentrations depend on sampling and laboratory procedures (Figure 2). 

The interactions between factors that eventually determine measured E. coli values means that the 

effects of land management or mitigation practices may be difficult to separate from the effects of 

other factors at event (e.g., rainfall), seasonal (e.g., temperature, groundwater dilution) and climate 

time scales. The influence of many factors that operate at various timescales makes selection and 

application of suitable trend detection methods both essential and challenging. 

 

 

Figure 2: Summary of anthropogenic and natural factors that affect E. coli concentrations and trends.  
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4 Trend analysis methods 

4.1 Traditional trend analysis approach (Sen slope) 

Traditional approaches for detecting and estimating changes in water quality data, including E. coli, 

assume the effects of event and seasonal factors can be considered as “random noise”, the 

distribution of which does not change over time. Statistical evidence for an underlying linear trend 

with a non-zero slope is then tested using the non-parametric rank-order Mann-Kendall Slope Test. 

Following this, the linear slope of any trend is estimated using the semi-parametric Thiel-Sen Slope 

Estimator (“Sen slope”). In addition, McBride (2019) provided a framework for determining a 

“strength of evidence” for this estimated trend, which is more meaningful than simply reporting a p-

value for statistical significance. These methods were recently reviewed by Fraser et al. (in prep.). 

Commonly-used extensions of these methods include seasonal blocking and/or flow adjustment. 

Seasonal blocking typically considers the values in each calendar month as a separate time series 

(block), and only compares values within the same block; other blocking strategies may also be used. 

This results in an analysis which is robust to seasonal patterns but has less statistical power overall 

(i.e., reduces our ability to reliably detect change), due to the lower sample size in each block. 

Flow adjustment typically involves development of a regression relationship between streamflow at 

time of sampling and measured water quality. This is often done using LOESS (locally estimated 

scatterplot smoothing). The regression assumes that the residuals will be normally distributed with a 

mean of zero, so that flow-adjusted trend estimation is no longer non-parametric and may be 

sensitive to the distribution of the data. It also assumes that the concentration-discharge relationship 

does not change with time. These requirements are not always checked. The water quality data are 

then adjusted by removing the predicted difference in water quality due to flow being above or 

below its long-term median value, and trend detection and estimation is carried out on the adjusted 

values.  

The traditional approach has the following characteristics: 

1. Can handle non-normally distributed data and/or seasonal data and/or randomly 

missing values and/or outliers and/or irregularly spaced samples. 

2. Can only identify a linear trend (a single slope estimate is provided), even if the true 

trend is nonlinear. This is particularly a drawback for longer time series, say, several 

decades. 

3. Trend estimation breaks down in the presence of large numbers (more than 29%) of 

outliers and/or censored values, which can occur in some water quality time series. 

4. In the flow-adjusted case, the residuals are assumed to be normally distributed with a 

mean of zero and the flow relationship is assumed to remain the same over time. 

These assumptions are not required in the original tests and are not always checked. 

4.2 Alternative trend analysis approach (GAM) 

The traditional trend estimation method described above can address only some of the objectives of 

the current study. In particular, our brief was to explore recent changes in long term data, which is 

best modelled using non-linear trends.  
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Furthermore, the traditional method cannot easily incorporate the effects of multiple, interacting or 

time-varying environmental covariates (potential factors).  

These objectives can be met using a Generalised Additive Model (GAM) approach (Hastie and 

Tibshirani, 1986, 1990; Yang and Moyer, 2020). GAMs are an extension of multiple regression. 

Instead of a sum of linear terms, GAMs fit the data using a sum of generalised smooth semi-

parametric non-linear terms (e.g., smoothing splines, tensor product smooths). Each smooth term is 

constructed from the sum of simpler basis functions (e.g., cubic polynomials). In contrast to the 

similar LOESS (locally estimated scatterplot smoothing) method, which requires subjective tuning, 

the GAM method (as implemented in the mgcv package in R) provides automated smoothness 

estimation as well as rejection of terms that are not statistically supported by the data. 

Compared with the traditional non-parametric approach, the GAM approach has the following 

characteristics: 

1. It assumes that the residuals are normally distributed with a mean of zero and few 

outliers. 

2. It can handle seasonal data and/or randomly missing values and/or irregularly spaced 

samples. 

3. It can identify non-linear trends, which is desirable for longer (e.g., multi-decadal) time 

series. 

4. Adjusting for covariates such as flow is straightforward, as well as interactions 

between covariates. Correlations between covariates are handled as in multiple 

regression models. 

GAM models are specified as a sum of non-linear terms, one for each potential covariate of interest, 

and optionally including interaction terms. Each non-linear term is a smooth semi-parametric 

function that is determined during model calibration. The approach can also be extended to include 

categorical variables (GAMM, generalised additive mixed models). The GAM models used in the 

current study were of the form: 

y ~ f1(time) + f2(month) + f3(flow0) + f4(flow1) + f5(flow2) + f6(flow3) 

                     + f7(rain0) + f8(rain1) + f9(rain2) + f10(rain3) + f11(wt) + f12(at) +  

for example, where 

▪ y is the measured E. coli value (CFU/100 mL) transformed as described in Section 6.4, 

▪ fi is a smooth semi-parametric function of the particular covariate (e.g., a regression 

spline; Simpson, 2018), 

▪ time is the continuous decimal time in years, 

▪ month is the continuous decimal time within a year, 

▪ flow0 is the mean flow (m3/s) on the day of water quality sampling. Mean flow 1, 2 or 

3 days previously were also included as additional covariates (flow1, flow2, flow3). We 

applied a natural log transformation for all flow covariates—while not strictly 

necessary, it is convenient for variables that may vary over many orders of magnitude. 
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▪ rain0, rain1, rain2, rain3 are the average daily catchment rainfall (mm) on the day of 

sampling and the three previous days,  

▪ wt is the water temperature (°C) at the time of water quality sampling,  

▪ at is the average daily catchment air temperature (°C) on the day of sampling, and 

▪  is the residual (unexplained variance). 

Each function fi() is a generalised smooth function. The coefficients of these functions are 

simultaneously determined by linear regression to the data. More complex smooths are able to more 

closely fit complex patterns in the data but also require more data to fit. The implementation of GAM 

in the mgcv package in R includes the option to automatically simplify the fi() functions if the data do 

not support a more complex form. Interaction terms may also be added (e.g., f13(time, month)), but 

require more data to fit and may be more difficult to interpret. Interaction terms were not included 

in the current study. 

Like the traditional non-parametric trend approach, GAM does not require equally spaced points, 

although sampling should not be biased in time (e.g., sampling only in summer). Unlike the 

traditional non-parametric trend approach, GAM assumes that the model residuals are independent, 

identically distributed Gaussian random numbers. This means that an appropriate transformation 

may be required to achieve data symmetry (e.g., Box-Cox; Fischer, 2016), and the influence of 

outliers must be considered. 

Use of GAMs to analyse trends in environmental data and separate the effects of one or more 

potential drivers is becoming increasingly common. For example, Fewster et al. (2000) used GAMs to 

identify and compare trends in farmland bird species abundance data in the United Kingdom. 

Similarly, Simpson (2018) describes the use of GAMs to model paleoecological time series with 

irregular observations. In the water quality space, Beck and Murphy (2017) applied GAMs to 

modelling chlorophyll-a concentrations in the Patuxent River estuary in terms of salinity, flow, and 

day of year. Yang and Moyer (2020) likewise used GAMs to infer water temperature, turbidity and 

conductance trends in the James River on the basis of flow and seasonal drivers. 

 

  



 

E. coli trends in Waikato streams  23 

 

5 Summary of types of data used 
In this section, we summarise the main data sources. Later sections provide more details on the data. 

The primary data source for this study was WRC’s long-term stream water quality monitoring data, 

which included E. coli measurements (quarterly prior to 2014, then monthly). In addition to this, 

environmental and land use data were collected from several sources. “Sites” refer to stream 

monitoring locations, unless otherwise stated. 

Water quality data (especially E. coli) were drawn from two sources: 

▪ WRC monthly water quality records (especially E. coli, turbidity, visual clarity (from 

black disk sighting distance), water temperature) from 136 sites (Vant, 2018). 

▪ NIWA water quality records (6 sites) were checked, but were not used in the analysis, 

as these largely overlapped with the WRC data. 

Each site was associated with a river segment on version 2.5 of the New Zealand River Environment 

Classification (NZREC) national drainage network (Snelder et al. 2010).   

Supporting data (used to explain E. coli trends) were drawn from a range of data sources: 

▪ WRC continuous streamflow data from 39 sites. Each water site was associated with a 

nearby flow site, following Vant (2018). 

▪ WRC livestock layer for the catchments of 136 WRC water quality sites. These were 

spatial data for livestock type and density in the entire upstream catchment of each 

site at four points in time (2008, 2012, 2019, 2021). The density was derived from 

AgriBase data. 

▪ WRC point source loads from 40 point source discharge locations (e.g., sewage 

treatment outflows, treated wastewater discharges from dairy factories and meat 

works) (Vant, 2014). 

▪ WRC fencing survey records from 613 longitudinal stream bank transects (Norris et al. 

2020). These were distributed independently of the water quality monitoring sites, and 

only 50 of the water quality catchments contained fence survey transects. 

▪ NIWA Virtual Climate Station Network (VCSN) daily weather data, spatially averaged 

over the upstream catchment for each of the 136 WRC water quality sites, to give a 

daily average rainfall and daily mean temperature for each catchment. 

▪ NIWA CLUES land use data for each of the 136 water quality site catchments. These 

were spatial data for land use in the entire upstream catchment of each site at two 

points in time (2008, 2018), and are based on AgriBase and the New Zealand Land 

Cover Database LCDB3. This data set summarises the legal property areas associated 

with each land use as surveyed in 2008 and 2018, including dairy, sheep/beef (sb), 

exotic, native, urban and other (e.g., other livestock, arable, horticulture, scrub). 
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6 E. coli data 

6.1 Water quality sites 

The 82 water quality sites that had E. coli data at least covering the period from 2010 to 2019 were 

used in this study (Figure 3; Table 2). Of these, 56 were able to be associated with a nearby flow site. 

These streamflow recording sites are also shown in Figure 3 and listed in Table 2. Each water quality 

site also had other water quality measurements (e.g., black disk visibility, turbidity, water 

temperature), and virtual climate station network (VCSN), WRC livestock density, and CLUES land use 

data were available for the catchment upstream.  

WRC stream sites are identified with a numerical code. For example, site 1131_328 is at the Waikato 

River at Narrows Boat Ramp, south of Hamilton. The first part of the code is the river number and the 

second part of the code is the unique monitoring site number on that river.  

 

Figure 3: Map of the Waikato Region showing WRC water quality and flow site locations, as well as 
major point source discharges. Red circles = water quality sites, blue crosses = flow sites, purple triangles = 
point sources. Water quality site details are given in Table 2. 



 

E. coli trends in Waikato streams  25 

 

Table 2: List of water quality monitoring sites analysed in this study (N = 82). These sites had E. coli data 
at least covering the periods from 2010 to 2019. Sites with a nearby flow data site are indicated. NZSEG is the 
NZREC river segment ID.   
 

Key River Station From To N Ncens NZSEG Long Lat Flow 

1098_1 Waerenga Stm Taniwha Rd 1998 2020 151 0 3050816 175.2905 -37.3838 - 

1105_3 Waiau River E309 Rd Ford 1998 2020 151 0 3037301 175.5244 -36.7939 954_5 

1106_4 Waihaha River SH32 1998 2020 150 10 3136644 175.6827 -38.7002 - 

1122_18 Waihou River Okauia 1998 2020 153 0 3064061 175.8394 -37.7874 1122_18 

1122_41 Waihou River Whites Rd 1998 2020 150 0 3078605 175.8141 -38.0193 669_13 

1131_105 Waikato River Ohaaki Br 1998 2020 269 6 3123400 176.3037 -38.5328 1131_159 

1131_107 Waikato River Ohakuri Tailrace Br 1998 2020 269 56 3111845 176.0861 -38.407 1131_163 

1131_127 Waikato River Taupo Control Gates 1998 2020 269 86 3135527 176.0699 -38.6811 1131_119 

1131_133 Waikato River Tuakau Br 1998 2020 268 0 3048245 174.9452 -37.296 1131_91 

1131_143 Waikato River Waipapa Tailrace 1998 2020 268 15 3099935 175.6852 -38.2855 1131_161 

1131_147 Waikato River Whakamaru Tailrace 1998 2020 260 18 3112254 175.8063 -38.4187 1131_162 

1131_328 Waikato River Narrows Boat Ramp 1998 2020 161 1 3066645 175.3477 -37.8396 1131_160 

1131_69 Waikato River Horotiu Br 1998 2020 268 3 3059280 175.2068 -37.6977 1131_74 

1131_77 Waikato River Huntly-Tainui Br 1998 2020 267 1 3055438 175.1543 -37.5662 1131_74 

1131_91 Waikato River Mercer Br 1998 2020 269 0 3047923 175.0467 -37.2813 1131_91 

1173_2 Waiohotu Stm Waiohotu Rd 1998 2020 150 2 3077848 175.9193 -38.0038 669_13 

1174_4 Waiomou Stm Matamata-Tauranga 
Rd 

1998 2020 153 0 3067934 175.8655 -37.8533 1122_18 

1186_2 Waiotapu Stm Campbell Rd Br 1998 2020 149 60 3109925 176.3462 -38.3805 - 

1191_10 Waipa River Pirongia-Ngutunui Rd 
Br 

1998 2020 95 0 3076838 175.2039 -38.0058 1191_11 

1191_12 Waipa River SH3 Otorohanga 1998 2020 151 1 3091406 175.2086 -38.1922 1191_13 

1202_7 Waipapa Stm Tirohanga Rd Br 1998 2020 150 0 3112853 175.9597 -38.4228 - 

1226_1 Waitahanui River Blake Rd 1998 2020 148 4 3144485 176.0862 -38.7981 - 

1230_1 Waitakaruru River Coxhead Rd Br 1998 2020 152 0 3047683 175.3579 -37.2724 481_2 

1236_2 Waitawhiriwhiri 
Stm 

Edgecumbe Street 1998 2020 150 1 3062685 175.2701 -37.773 421_4 

1239_32 Waitekauri River U/S Ohinemuri 
Conflu 

1998 2020 150 0 3051680 175.7832 -37.4167 619_19 

1247_2 Waitetuna River Te Uku-Waingaro Rd 1998 2020 150 0 3064930 174.9752 -37.8181 - 

1249_15 Waitoa River Landsdowne Rd Br 1998 2020 152 2 3062720 175.7412 -37.7653 1249_38 

1249_18 Waitoa River Mellon Rd Recorder 1998 2020 152 0 3054693 175.6292 -37.5296 1249_18 

1253_5 Waitomo Stm SH31 Otorohanga 1998 2020 150 0 3090304 175.1923 -38.1808 1253_3 

1253_7 Waitomo Stm Tumutumu Rd 1998 2020 151 0 3096865 175.0988 -38.2602 1253_3 

1257_3 Waiwawa River SH25 Coroglen 1998 2020 151 0 3039645 175.6932 -36.924 1257_2 

1287_7 Whakauru Stm U/S SH1 Br 1998 2020 149 1 3093674 175.8718 -38.2145 - 

1301_1 Whanganui Stm Lakeside Lake Taupo 
T8 

2001 2020 136 1 3143172 175.731 -38.7829 1318_5 

1312_3 Wharekawa River SH25 1998 2020 151 0 3044647 175.842 -37.1357 1312_1 
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Key River Station From To N Ncens NZSEG Long Lat Flow 

1318_4 Whareroa Stm Lakeside Lake Taupo 
T9 

2001 2020 138 1 3149001 175.7827 -38.8593 1318_5 

169_2 Hikutaia River Old Maratoto Rd 1998 2020 151 0 3048567 175.671 -37.2896 234_11 

171_5 Hinemaiaia River SH1 1998 2020 148 4 3149003 176.0207 -38.854 171_4 

230_5 Karapiro Stm Hickey Rd Bridge - 
Cambridge 

1998 2020 152 1 3070130 175.5349 -37.8996 - 

234_11 Kauaeranga River Smiths 
Cableway/Recorder 

1998 2020 150 1 3044978 175.5905 -37.1574 234_11 

240_5 Kawaunui Stm SH5 Br 1998 2020 150 0 3110340 176.3426 -38.3822 - 

253_4 Kirikiriroa Stm Tauhara Dr 1998 2020 151 0 3061405 175.2615 -37.745 421_4 

258_4 Komakorau Stm Henry Rd 1998 2020 152 0 3056992 175.2531 -37.6262 - 

282_5 Kuratau River Te Rae Street T10 2001 2020 139 2 3151224 175.7686 -38.8887 - 

33_6 Awakino River Gribbon Rd 1998 2020 150 0 3123054 174.8371 -38.5631 - 

33_9 Awakino River SH3 Awakau Rd 
Junction 

1998 2020 149 2 3131731 174.709 -38.6724 - 

335_1 Little Waipa Stm Arapuni - Putaruru 
Rd 

1998 2020 150 0 3081097 175.6968 -38.0553 - 

359_1 Mangaharakeke 
Stm 

SH30 1998 2020 150 0 3106095 176.0118 -38.3472 - 

380_2 Mangakara Stm SH5 1998 2020 150 0 3116290 176.3175 -38.4526 - 

39_11 Awaroa Stm Sansons Br at 
Rotowaro-Huntly Rd 

1998 2020 152 0 3056003 175.091 -37.587 481_2 

398_1 Mangakotukutuku 
Stm 

Peacockes Rd 1998 2020 151 0 3064979 175.3005 -37.8118 421_4 

407_1 Mangamingi Stm Paraonui Rd Br 1998 2020 150 0 3091783 175.8394 -38.1969 - 

410_4 Manganui River Off Manganui Rd 1998 2020 148 0 3130367 174.6692 -38.6442 - 

411_9 Mangaohoi Stm South Branch Maru 
Rd 

1998 2020 152 3 3079677 175.5382 -38.0509 818_2 

417_7 Mangaone Stm Annebrooke Rd Br 1998 2020 150 1 3064673 175.3363 -37.8092 421_4 

421_10 Mangaonua Stm Hoeka Rd 1998 2020 152 0 3063144 175.3875 -37.7793 421_4 

421_16 Mangaonua Stm Te Miro Rd 1998 2020 144 0 3065476 175.5126 -37.8171 421_4 

443_3 Mangapu River Otorohanga 1998 2020 150 0 3091562 175.2053 -38.1959 1191_13 

476_7 Mangatutu Stm Walker Rd Br 1998 2020 151 0 3083539 175.3961 -38.0982 818_2 

477_10 Mangauika Stm Te Awamutu 
Borough W/S Intake 

1998 2020 150 14 3077698 175.1374 -38.0305 - 

488_1 Mangawhero Stm Cambridge-Ohaupo 
Rd 

1998 2020 151 1 3069532 175.4049 -37.8898 421_4 

489_2 Mangawhero Stm Mangawara Rd 1998 2020 150 0 3051409 175.4244 -37.4008 481_2 

504_2 Mapara Stm Off Mapara Rd T1 1998 2020 149 0 3136377 175.9664 -38.6904 971_4 

513_3 Marokopa River Speedies Rd 1998 2020 151 0 3095966 174.8347 -38.2594 - 

556_2 Mokau River Awakau Rd 1998 2020 150 0 3133606 174.7243 -38.6848 556_9 

556_5 Mokau River Mangaokewa Rd 1998 2020 151 0 3115276 175.2862 -38.4656 414_13 

556_9 Mokau River Totoro Rd Recorder 1998 2020 150 0 3123396 174.9048 -38.5716 556_9 

557_5 Mokauiti Stm Three Way Point - 
Aria 

1998 2020 150 0 3122377 174.9814 -38.5507 556_9 
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Key River Station From To N Ncens NZSEG Long Lat Flow 

616_1 Ohautira Stm Waingaro Te Uku Rd 1998 2020 150 0 3061831 174.9725 -37.7632 - 

619_19 Ohinemuri River Queens Head 1998 2020 151 0 3051991 175.7944 -37.4146 619_19 

619_20 Ohinemuri River SH25 Br 1998 2020 150 1 3050858 175.8667 -37.3734 619_19 

624_5 Ohote Stm Whatawhata/Horotiu 
Rd 

1998 2020 151 0 3062320 175.1509 -37.7679 - 

665_5 Opuatia Stm Ponganui Rd 1998 2020 150 0 3050086 174.885 -37.3653 1282_8 

669_6 Oraka Stm Lake Rd 1998 2020 150 0 3071941 175.7706 -37.9221 669_13 

683_4 Otamakokore Stm Hossack Rd 1998 2020 150 0 3103240 176.2637 -38.3072 683_4 

749_10 Piako River Kiwitahi 1998 2020 152 1 3059826 175.6038 -37.7023 749_15 

749_15 Piako River Paeroa-Tahuna Rd Br 1998 2020 149 0 3054261 175.5063 -37.5135 749_15 

753_4 Piakonui Stm Piakonui Rd 1998 2020 152 0 3066020 175.6301 -37.827 - 

786_2 Pokaiwhenua Stm Arapuni - Putaruru 
Rd 

1998 2020 150 0 3081022 175.7225 -38.0579 - 

802_1 Pueto Stm Broadlands Rd Br 1998 2020 147 1 3129762 176.2585 -38.613 - 

934_1 Tahunaatara Stm Ohakuri Rd 1998 2020 150 0 3105500 176.0705 -38.3378 - 

940_10 Tairua River Morrisons Br Hikuai 1998 2020 151 1 3043115 175.7709 -37.0744 940_2 

954_5 Tapu River Tapu-Coroglen Rd 1998 2020 151 0 3040973 175.5051 -36.9816 954_5 

 

6.2 Data preparation  

E. coli was measured quarterly at most sites prior to 2013, usually in March, June, September and 

December. From 2013 onwards, measurements were made monthly. Prior to analysis, these data 

were checked thoroughly, and several small amendments were made: 

▪ Some of the WRC sites had been relocated and/or renamed, so the data from these 

were combined (1191_10 into 1191_2, 1131_101 into 1131_328, 414_12 into 414_6, 

971_4 into 971_5). 

▪ Only E. coli results derived using method 507 were used (E. coli by membrane 

filtration, count on MFC agar, confirmation by NA-MUG. APHA 9222 G. CFU/100 mL). 

The few data points using the older 506 method were removed.  

▪ Data from the 6 NIWA National River Water Quality Network (NRWQN) sites were 

considered for inclusion, but after examining the data and comparing it with data from 

nearby WRC sites, we felt it did not add anything significant to the data set.  

▪ Sites with short data records were excluded from the analysis, leaving 82 sites with 

available E. coli data starting between May 1998 and March 2001 and finishing 

between October 2020 and December 2020. 

Figure 4 shows the raw E. coli data for the 82 sites analysed, plotted as a time series with a simple 

smoothed curve (2-year rolling median) to indicate trend. The annual medians of the raw E. coli 

concentrations for the 82 sites and a regional annual median are shown in Figure 5. The low number 

and high variability of samples in each year results in high variation in the year to year median.  
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Figure 4: Raw E. coli data at 82 WRC SOE sites.  Censored values are highlighted in blue. A simple trendline 
has been superimposed (2-year rolling median). The x-scale is years. 
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Figure 5: Annual median E. coli concentration (CFU/100 mL) at 82 WRC SOE sites. The black curve plots 

the annual median across all sites. 

6.3 Data censoring and banding correction 

Approximately 1.2% of E. coli 507 values were censored (mostly low values that were left-censored), 

although the fraction was as high as 40.2% at some sites. Censored values can cause problems with 

trend analysis, especially at sites where generally low levels of E. coli occur and a large proportion of 

the observations are left-censored (i.e., reported as being “less than” a certain value). The WRC E. 

coli data contained a range of censorship levels, the majority being left-censored ("< 1", "< 2", "< 5", 

"< 10", "< 30", "< 100", "< 1000") as well as a few right-censored values ("> 600", "> 6000", "> 

100000"). At some sites, censorship levels changed over time.  

Seven sites had more than 5% censored values (blue data points, Figure 4). These included four 

upper Waikato River sites (site codes starting with 1131), as well as Waiotapu Stream at Campbell’s 

Road Bridge (1186_2), Waihaha River at State Highway 32 (1106_4) and Mangauika Stream at Te 

Awamutu Water Intake (477_10). An increase in the left-censorship level (from < 1 to < 10 CFU/100 

mL) can be seen in the data across all sites from about October 2017 onwards (i.e., an upward shift in 

the blue data points towards the right-hand end of the time series).  

For example, Figure 6 shows detail from Figure 4 for a site with very low faecal contamination (site 

1131_127, Waikato River at Taupo Control Gates). The impact of censorship (blue markers) and 

banding (lines of discrete y-values) are both clear, including the marked change in censorship level 

after October 2017. 
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Censored values can cause artefactual trends (illustrated in Figure 6), where the apparent upward 

trend is influenced by the change in censorship level. To avoid this, censored values must be adjusted 

to reduce artefacts. Several approaches to handling censored values are discussed in Appendix A. The 

method adopted in the current study is “imputation”, in which the censored values are adjusted to 

restore, as far as possible, the mean of the original data set without censoring. In this approach, 

censored values are replaced with the mean of measured values outside the censored value (or with 

the censoring limit itself if there are no measurements outside the censored value). 

 

 

Figure 6: Raw E. coli data at Waikato River at Taupo Control Gates (site 1131_127).  Censored values are 
shown as blue points. A simple trendline has been superimposed (calculated using a simple GAM). 

Banding (e.g., due to reporting of low count data as numbers with 1 significant digit in Figure 6) can 

be also a problem for the traditional non-parametric method described above, because calculation of 

both the Mann-Kendall and Thiel-Sen statistics both rely on comparing values in the time series. 

Banded causes over-representation of several equal values, which must be handled carefully to avoid 

a biased Mann-Kendall statistic or Theil-Sen slope estimate (Helsel et al., 2020). The GAM approach is 

not sensitive to banding provided the measurement error is similar for all measurements, which is 

approximately true for log-transformed E. coli data (Harmel et al. 2016). 

6.4 Data skew and outlier correction 

The traditional trend estimation methods described above are robust for non-normally distributed 

(e.g., highly skewed) data and/or outliers. However, the GAM method that we wish to use to 

determine the influence of multiple factors on E. coli trends is a regression method that relies on 

symmetrically distributed residuals.  

Achieving normally distributed residuals (and satisfying the requirements of the model) can be 

accomplished using a data transformation (Lee, 2020). Although log transformation is useful in some 

cases, the more general Box-Cox transformation may be more effective for highly skewed data 

(Fischer, 2016). Box-Cox is a scaled power transformation with a parameter lambda (): 
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𝑦′ = {
𝑦𝜆 − 1

𝜆
, 𝜆 ≠ 0

log(𝑦) , 𝜆 = 0

 

In the special case where lambda equals zero, Box-Cox is the same as a log transformation. The 

boxcox() function in R was used to determine the maximum likelihood value of lambda for each WRC 

E. coli data series (Figure 7). In most cases maximum likelihood values of lambda were less than 0, 

indicated that the data were more skewed than a log-normal distribution (Davies-Colley et al. 2019). 

This suggests that Box-Cox transformation is more appropriate for the WRC E. coli data than log 

transformation. 

 

Figure 7: Distribution of optimal Box-Cox lambda values used to transform E. coli data at the 82 WRC 
sites used in this study. 

Normality of the transformed data and also of the model residuals was checked using a Shapiro-Wilk 

test (shapiro.test() in R). The p-value from the test represents the probability that the data are 

sampled from a normal distribution. 

After GAM model fitting to the transformed data, the residuals were checked for extreme outliers. 

Extreme outliers are defined as data points that are further than 3 times the interquartile range 

outside the quartiles of the data (SAS, 2009). Extreme outliers were identified using the is extreme() 

function of the rstatix package in R. Extreme outliers were uncommon, and so were counted and 

marked, but not removed.  

6.5 Effect of change in sampling frequency 
Change point analysis carried out using the EnvCpt package in R (Killick et al., 2012, 2021) 
determined that the change from quarterly to monthly sampling from 2013 onwards was not 
associated with a step change in observed E. coli concentrations. Since both the traditional and 
alternative trend analysis methods allow irregularly spaced data, the main effect of the increase in 
sampling frequency from 2013 onwards was expected to be seen as lower uncertainty in the trend 
estimates after this time.   
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7 Factors related to faecal pollution trends, and relationships to 
E. coli concentrations  

This section presents the data on covariates that could be related to faecal pollution trends, and 

simple correlations between these covariates and E. coli concentrations. In addition, relationships 

between E. coli and other water quality variable are explored to see whether they could give insight 

into reasons for trends, or patterns observed in trends. 

7.1 Water quality variables other than E. coli 

The WRC water quality monitoring programme includes a range of other water quality variables in 

addition to E. coli concentration. Turbidity, water temperature and black disk visual clarity were also 

examined. Turbidity and visual clarity often co-vary with E. coli (e.g., Davies-Colley et al. 2018), while 

temperature is often found to correlate because of its effects on biological and chemical processes. 

Only turbidity (NTU) data derived from measurement method 69 was used (Nephelometry, Portable 

Hach 16800, R.J. Hill Laboratories). There were few data points using the older 65 method, and it is 

not advisable to use turbidity measurements from different instruments since these may be weakly 

comparable (Davies-Colley et al. 2021). Water temperature (°C) measured with methods 15 and 1274 

were combined, because these methods are considered equivalent. Black disk visual clarity (m) 

measured with methods 18 to 23 were also combined. 

Davies-Colley et al. (2018, 2021, 2021 in press) propose that visual clarity is a more meaningful 

measure of optical water quality than is turbidity because it is a physical quantity expressed in SI 

units, and reported values are not instrument-independent.  Visual clarity may also be directly 

related to swimmability. However, it is recognised that reasonably robust local (site-specific) 

relationships between turbidity and visual clarity may be demonstrated, and on this basis turbidity 

can be used under the National Objectives Framework of the National Policy Statement for 

Freshwater Management (NPS-FM 2020; New Zealand Government, 2020).  

Figure 8 shows the correlation between E. coli and other water quality variables considered in the 

current study. Davies-Colley et al. (2018) found Pearson’s correlation coefficients of -0.53 and 0.53 

for E. coli against visual clarity and turbidity respectively, on a log-log scale. Pearson correlations 

were similar at -0.57 and 0.62 respectively for the WRC data in the current study. The relationship 

with water temperature is non-linear, with a maximum at approximately 16 °C. 

Turbidity is of particular interest as a potential indicator of E. coli concentrations, due to ease of 

automated high-frequency measurement. E. coli-turbidity responses by site were plotted in Figure 9. 

Most sites showed a positive correlation between turbidity and E. coli, so there is a strong likelihood 

that turbidity trends will align with E. coli trends. The equivalent plot for visual clarity is given in 

Figure 10. In contrast to turbidity, most sites showed a negative correlation between visual clarity 

and E. coli. Therefore, it is likely that visual clarity trends will be opposite to those of E. coli. This 

reflects the typical strong inverse relationship of visual clarity and turbidity shown in Figure 8 

(Davies-Colley et al. 2018). The relationships between E. coli and turbidity or visual clarity give some 

insights into potential drivers of trends. For example, increased rainfall and flow are likely to increase 

turbidity and decrease visual clarity. On the other hand, there may be drivers which increase E. coli 

without affecting turbidity. For example, increased temperature is likely to affect E. coli numbers 

without affecting turbidity. Similarly, a point source may be high in E. coli but with low associated 

turbidity. 
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The relationship between E. coli and water temperature shows that a non-monotonic relationship 

exists. Interpretation of this relationship requires consideration of factors such as the correlation 

between land use and altitude, and land use practices and season.  

 

Figure 8: Correlation between E. coli and other water quality variables. Black disk visibility (left), turbidity 
(middle) and water temperature (right). Points are coloured by site, and a smoothed response curve is shown 
for each variable (calculated using a simple GAM), with uncertainty bands indicated as grey shading.  Note log10 
scale for all axes. 

 

7.2 Air temperature and rainfall 

Catchment weather variables were estimated from the NIWA Virtual Climate Station Network (VCSN) 

data set. This daily (midnight to midnight) weather data set is interpolated from physical stations 

onto an approximately 5 × 5 km grid across the whole of New Zealand. For the current study, 

catchment daily rainfall (mm) and air temperature (°C) at the time of each water sample was 

calculated as the average of daily values from all of the VCSN grid points contained within the 

catchment.  

Correlations between measured E. coli concentrations and rainfall are shown in Figure 11. At many 

sites, there are positive correlations between E. coli and rainfall, and there are very few sites with 

negative correlation. That means for a given catchment, days with higher rainfall tend to have higher 

E. coli counts. As explained in Section 3.3, we expect the positive correlation of E. coli with rainfall as 

seen at most sites, because resulting runoff can wash faecal matter from land into streams, and 

consequent stream flow increase can entrain channel stores of E. coli (e.g., Stott, 2011).  

Correlations between measured E. coli concentrations and air temperature are shown in Figure 12. 

Generally positive correlations exist between E. coli and air temperature. That means for a given 

catchment, days with higher temperature tend to have higher E. coli counts. The increase of E. coli 

with temperature is complicated. E. coli might be expected to decrease with temperature, because 

die-off is greater at higher temperatures, and higher temperatures may also be associated with 

greater UV-induced decay and smaller flows in summer when temperatures are high. However, 

increased temperature could also be associated with increased growth in some sub-environments, 

such as faecal deposits on land and increased survival of naturalised E. coli in soil and in water (see 

Section 3). 
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Figure 9: Correlation between E. coli and turbidity at all 82 WRC SOE sites.  A smoothed response curve is 
shown for each site (calculated using a simple GAM), with uncertainty bands for the average response 
indicated as grey shading. 
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Figure 10: Correlation between E. coli and visual clarity at the 79 WRC SOE sites that had clarity data. A 
smoothed response curve is shown for each site (calculated using a simple GAM), with uncertainty bands 
indicated as grey shading. 
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Figure 11: Correlation between E. coli and VCSN daily catchment rainfall (mm). A smoothed response 
curve is shown for each site (calculated using a simple GAM), with uncertainty bands indicated as grey shading. 
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Figure 12: Correlation between E. coli and VCSN catchment daily average temperature (°C). A smoothed 
response curve is shown for each site (calculated using a simple GAM), with uncertainty bands indicated as 
grey shading. 
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Since E. coli levels are correlated with rainfall and temperature within a catchment, it is important to 

know whether the long term rainfall and/or temperature data show any patterns that could explain 

trends in the E. coli data (Figure 4). Annual total rainfall and annual average temperatures for each 

catchment are shown in Figure 13. The high degree of similarity in the patterns between sites is a 

result of the VCSN data being generated by interpolating and smoothing data from physical stations.  

Both rainfall and the temperature data show changing (and different) trends over time, suggesting 

that inclusion of longer term rainfall and temperature in the analysis could help explain the observed 

trends in the E. coli data.  We recommend this as a potential area for further investigation.  

 

 

Figure 13 Catchment annual total rainfall (mm) (top) and annual average temperature (°C) (bottom) for 
the 82 WRC SOE sites. Traces are coloured by site, and data are averaged over VCSN points within the 
catchment of each E. coli monitoring site. The black curve  plots the annual median value across all sites. 

 

7.3 Livestock density  

Land use type and intensity are known to be primary drivers of E. coli concentrations (see Section 3). 

Two sets of land use data were available: livestock types and numbers from WRC, and land use type 

and extent of cover from CLUES. Although the livestock density and land use data are only available 

at a few points in time, they can be used to see whether E. coli concentrations or E. coli 

concentration trends are correlated with the density of the different types of livestock or with land 

use or changes in the density of stock or land use. 

Figure 14 show the changes in land use from the WRC data set, which gives livestock numbers in 

each catchment as surveyed in 2008, 2012, 2019 and 2021, expressed as “stock units” per hectare 

(SU/ha). The “stock units” metric scales animal numbers to allow different livestock types to be 

compared (e.g., 1 breeding ewe = 1 SU, 1 dairy cow = 7 SU, 1 beef cow = 5.5 SU, etc., Waikato 

Regional Council, 2019).  
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Figure 14: WRC (AgriBase) livestock density data (SU/ha). Total SU/ha is shown in black, and the x-axis 
shows the survey year. 
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No livestock were recorded in two fully forested catchments (Hinemaiaia River 171_5 and Mangauika 

Stream 477_10). Several other catchments show unusual patterns that may be data errors, but these 

are yet to be fixed. Apart from a few subcatchments, there have not been major changes in stocking 

rates. Exceptions include the Pueto Stream (802_1) and Whakauru Stream (1287_7), which both had 

an increase in stock number following pasture establishment. 

Figure 15 shows the simple correlation between long-term median E. coli concentration and long-

term median livestock density of different types. Median E. coli concentrations generally increase 

with beef and dairy cattle densities (stock units per hectare, SU/ha), although there is considerable 

variation, presumably due to other land uses in the catchment and environmental factors such as 

land form, geology or average catchment rainfall and temperature. Surprisingly, median E. coli 

concentrations are not strongly correlated with sheep numbers, despite the fact that sheep faeces 

are known to contain high E. coli counts (Wilcock, 2006). However, this could be due to the generally 

low numbers of sheep in these catchments, with only one catchment having > 4 sheep SU/ha 

(Mapara Stream, Lake Taupo, 504_2) compared with dairy numbers. Other livestock types were only 

present in low numbers. 

 

 

Figure 15: Correlation between long term E. coli and WRC (AgriBase) livestock density (SU/ha). Points are 
coloured by site, and median E. coli points and 5-95% quantile ranges are plotted for each site and a smoothed 
response curve is shown. 
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Figure 16: CLUES (LCDB) land use data, showing proportional area of six types of land use in each of the 82 

catchments. Data are as collated for 2008 and 2018. 
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7.4 Land use area 

The second land use data set comes from the CLUES model (based on AgriBase and the New Zealand 

Land Cover Database LCDB3) (Figure 16). This data set summarises the legal property areas 

associated with each land use as surveyed in 2008 and 2018. Unlike the WRC livestock density data, 

the CLUES data report the proportion of catchment area in each land use and distinguish native from 

plantation (“exotic”) forest. Land use categories include dairy, sheep/beef (sb), exotic, native, urban 

and other (e.g., other livestock, arable, horticulture, scrub). 

Figure 17 shows the simple correlation between long term median E. coli concentrations in surface 

waters and land use area of different types for the various WRC sites (median across survey years). 

Similarly to Figure 15, median E. coli concentrations generally increase with area of dairy or  sheep-

beef (sb) or urban, but generally decrease with area in forest (either native or plantation). It is 

noteworthy that fully native catchments (median E. coli about 30 CFU/100 mL as area fraction 

approaches 1) have less than approximately 1/10th the average E. coli concentrations of mostly dairy 

catchments (about 500 CFU/100 mL as the dairy fraction approaches 1). 

 

 

Figure 17: Correlation between E. coli and CLUES (AgriBase/LCDB3) land use area. Points are coloured by 

site, and median E. coli points and 5-95% quantile ranges are plotted for each site and a smoothed response 

curve is shown (sb = sheep and beef). 
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7.5 Fencing 

WRC surveyed fencing of streams adjacent to dairy and drystock pasture across all stream orders and 

subregions in 2002, 2007, 2012 and 2017 (Norris et al. 2020). Stratified sampling was used to achieve 

similar numbers of survey locations in each subregion × land use × stream order category. Drains 

were differentiated from other waterways for the purposes of the survey by using a stream order 

designation of 0. In each survey year, most survey sites were retained from the previous survey year, 

and additional sites were added. Survey sites initially consisted of both banks of a 1 km stretch of 

waterway; however, this was reduced to 500 m in 2017. 

The proportion of fenced stream bank is summarised in Figure 18 and Figure 19. Dairy pasture 

streams are generally fenced more than drystock pasture streams, but proportions of fenced stream 

bank have been increasing across the Waikato under both land uses. 

7.6 Point source discharges 

Major point source wastewater discharges occur into several Waikato streams, generally associated 

with town sewage or agricultural processing facilities such as dairy factories (see Vant, 2014). Annual 

average E. coli loads for the 2006-2015 period (expressed as 109 CFU per year) were available or 

estimated for 24 point source discharges, representing the major point source discharges in the 

region. The locations of these point source discharges are shown on Figure 3. From these data, the 

total upstream point source yield (i.e., total load divided by catchment area) was determined for 

each of the E. coli monitoring sites in our study. 

While we do not have information about changes in point source discharge loads over time, we can 

assess to what extent point sources yields determine E. coli concentrations measured in-stream. For 

each stream monitoring site, E. coli median and range for the 2006-2015 period was plotted against 

total upstream point source yield for the same period (Figure 20. The lack of correlation suggests that 

the contribution of point source loads to E. coli concentration in surface waters is relatively small 

compared with diffuse sources. That is, diffuse sources mask point source impacts on E. coli. 

7.7 Flow  

Streamflow data (m3/s) were available at 38 WRC flow sites (see time series of mean annual flow by 

site in Figure 21). The median annual flow has tended to decrease in the last few years (since 

approximately 2017), associated with the low rainfall (Figure 13). 

Each E. coli monitoring site (Table 2) was associated with either: (1) the flow site at the same 

location, (2) the flow site recommended by Vant (2018) as a flow indicator, or (3) the closest flow site 

on the same river, in that order of preference. This resulted in 56 WRC E. coli sites with an index of 

flow, leaving 26/82 WRC sites without flows (Table 2 Correlations between mean daily flow and E. 

coli concentrations are shown in Figure 22. Associations with mean daily flow were typically definite, 

but generally weak. 
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Figure 18: Changes in proportions of fenced streambank adjacent to drystock (sheep-beef) pastures, 

across subregions and stream orders. Order 0 refers to drains. The x-axis shows the survey year. 
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Figure 19: Changes in proportions of fenced streambank adjacent to dairy pastures, across subregions and 

stream orders. Order 0 refers to drains. The x-axis shows the survey year. 
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Figure 20: Correlation between E. coli concentrations at stream monitoring sites and total upstream point 
source yield. Points are coloured by site; median E. coli concentration and 5-95% quantile ranges were 
calculated for the 2006-2015 period (to match the point source estimate period). A smoothed response curve 
(calculated using a simple GAM) is also shown. The Total Upstream Point Source Yield for a monitoring site is 
the sum of annual loading over all point sources upstream of the monitoring site divided by the area of the 
catchment associated with the monitoring site. 

 

 

Figure 21: Annual average flow (m3/s) at 38 WRC flow sites. The black curve plots the annual median 

across all sites (based on scaled data so that each site has the same mean). 
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Figure 22: Correlation between E. coli and flow (m3/s) at a nearby flow gauge. A smoothed response curve 
(calculated using a simple GAM) is also shown. Site code/flow site code pairs are described in Table 2.  
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8 Estimation of E. coli trends 

8.1 Time window selection 

The purpose of trend detection is to identify a change in a quantity over time. The two main issues 

that arise are: 

1. What is the time scale of the trend we wish to detect?  

2. Are the data being affected by processes whose influence we wish to ignore? For example, we 

might wish to filter out the effect of streamflow on the trend to highlight the effect of land use 

change. 

Regarding the first issue, traditional trend detection methods (Thiel-Sen slope estimator) attempt to 

detect the presence of a linear trend, either using all available data, or data within a specified time 

window. In order to detect non-linear trends, these methods must be applied to multiple, shorter 

time windows of the data. However, a shorter time window may contain too few observations to 

detect a statistically significant trend. Traditional trend detection methods therefore require the 

modeller to choose between: 

▪ using a short time window that can identify short term changes, but with greater 

uncertainty, or  

▪ a long time window to estimate a linear trend with greater reliability, but which may 

hide non-linear patterns in the data. 

In response to this forced choice, analysts have recently tended to restrict themselves to inferring 

linear trends from datasets of at least 10 years in length (Snelder et al. 2018; Fraser et al. in prep.). 

This reduces the incidence of false-positive trends that may occur with shorter data series but 

probably preclude detection of non-linear trends, which may only become apparent over longer time 

periods.  

In the current study, overlapping time windows were initially tested, matching the approach used by 

LAWA (2021a). These windows were 2000-2019, 2005-2019, 2010-2019, and 2015-2019. However, 

using this approach, comparison and interpretation of the trend results was difficult. Longer time 

windows contained more data points and therefore the trend slopes were estimated with apparently 

lower uncertainty. On the other hand, longer windows also tended to have flatter trend slopes, due 

to the linear trend assumption. Furthermore, comparison of trend slopes between different time 

windows was confounded because the periods overlapped, shared data, and had different 

uncertainties.  

To avoid these problems, the trend analysis periods were subsequently changed to 5-year periods for 

this study: 2000-2004, 2005-2009, 2010-2014, and 2015-2019. Although 5-years may be considered 

too short for application of the traditional trend analysis methods, particularly since the regional 

streams only had quarterly E. coli data prior to 2013, it allowed direct comparison between periods 

and focus on the 2010-2014 and 2015-2019 periods of particular interest in which E. coli 

concentrations have fallen and then risen again. However, we expect the Thiel-Sen slope estimates 

for these short time periods to be appreciably variable and uncertain. 
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Specification of the time window is only necessary for the traditional trend detection approach, as 

the alternative method used (i.e., GAMs, Section 4.2) allows non-linear trends to be automatically 

identified when these are supported by the data, so avoiding the issue of time window selection by 

treating the dataset as a whole. In order to make comparisons between the results from the two 

methods, linear approximations of the 5-year sections of the non-linear GAM trends were calculated 

as described in Section 8.3.  

8.2 Traditional methods (based on Sen slope) 

The traditional method of identifying and quantifying linear trends uses the Mann-Kendall Slope Test 

and the Theil-Sen Slope Estimator. This method may also assume seasonal data (Hirsch et al. 1982) 

and/or may be applied to flow-adjusted data.  

For each site, the E. coli data were first transformed using the optimal Box-Cox transformation 

(described in Section 6.4) and censored values were then imputed to avoid inducing artefactual 

trends (as described in Section 6.3). Potential extreme outliers were then counted but not removed 

(as described in Section 6.4). Observations with missing covariate data (e.g., flow data at the time of 

sampling) were counted and removed. 

Four variants of Mann-Kendall/Thiel-Sen trend analysis were then carried out for the data in each 5-

year period separately, optionally including “seasonal” analysis and/or flow-adjustment. 

For the flow adjusted analyses, a concentration-flow relationship (e.g., Figure 22) was first fitted to 

the (Box-Cox transformed) E. coli data at each site (Smith et al. 1996) using a simple GAM model. The 

(Box-Cox transformed) E. coli data were then adjusted by subtracting this flow relationship, and 

trend analysis was carried out on the adjusted data. 

For the “seasonal” analyses, blocking was done by month, so that trend analysis and slope estimation 

only compare observations taken in the same month of the year.  

The four traditional approaches are therefore (terms in parentheses): 

1. Sen slope (“none”). 

2. Seasonal Sen slope (“seas”). 

3. Sen slope of flow-adjusted data (“flow”). 

4. Seasonal Sen slope of flow-adjusted data (“flowseas”). 

8.3 Alternative methods (based on GAM) 

The alternative approach to inferring trends in the data used the Generalised Additive Model (GAM) 

approach, with six different sets of covariates (c.f., Yang and Moyer, 2020). As explained in Section 

4.2, GAM models are regression models constructed by adding curvilinear terms and offer many 

advantages over the traditional approach. 

The first four GAM models were constructed using covariates to corresponding to those used in the 

traditional approach. The simplest GAM trend model (“none”) has a single curvilinear term 

representing the response (of E. coli) to year (similar to the curves in Figure 4, but fitted to the Box-

Cox transformed data). GAM models with a seasonal term (“seas”, “flowseas”) add a curvilinear term 

representing the response to time of the calendar year (i.e., “month”), and GAM models with a flow 
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response term (“flow”, “flowseas”) add a curvilinear term representing the response to flow (similar 

to the curves in Figure 22, but fitted to the Box-Cox transformed data). In this way, a GAM model is 

the sum of non-linear terms representing different covariates of interest.  

The four GAM models constructed to match the traditional models were therefore: 

1. y ~ f1(year) (“none”), 

2. y ~ f1(year) + f2(month) (“seas”), 

3. y ~ f1(year) + f3(flow) (“flow”), and 

4. y ~ f1(year) + f2(month) + f3(flow) (“flowseas”), 

where y is the Box-Cox transformed E. coli data. Interaction terms (e.g., fi(year, month)) were not 

included in our GAM models. Although these can explain more of the variation and result in a better 

fit, they also make interpretation more difficult. 

Two additional GAM models were also tested. One used rain and temperature data as additional 

covariates. Since rain and temperature data are widely available through NIWA’s VCSN, this approach 

may be particularly useful for sites without a nearby flow recorder. The other approach used all 

available covariates. 

5. y ~ f1(year) + f2(month) + f4(rain) + f5(air_temp) + f6(water_temp) (“raingam”), and 

6. y ~ f1(year) + f2(month) + f3(flow)+ f4(rain) + f5(air_temp) + f6(water_temp) (“allgam”). 

Although seasonal patterns of E. coli concentration are mainly responses to changing rainfall, flow 

and temperature which are included as covariates (Section 3), the month term was retained in these 

models to account for other seasonal factors such as solar radiation and land management actions 

that are not included explicitly as covariates (e.g., calving, livestock wintering, crop harvesting). The 

GAM fitting algorithm automatically assesses the evidence for each model term in order to avoid 

overfitting, and p-values are estimated for each term of the fitted model. Variable selection may also 

be done (Marra and Wood, 2011), but was not done here in order to apply the same models to all 

sites. 

All GAM models that used rain and/or flow as covariates also included rain and/or flow data from the 

previous 3 days (defined as midnight-midnight periods) as additional covariates; i.e., rain(t), rain(t-1), 

rain(t-2), rain(t-3), flow(t), flow(t-1), flow(t-2), flow(t-3). This allows the time for E. coli entering the 

stream to travel to the monitoring site to be considered, especially useful for larger catchments. In 

addition, E. coli concentrations may be sampled prior to, and therefore not be highly correlated with, 

rain or flow events on the same day. Correlations with earlier days’ rain or flow might be more 

consistent.  

In R code, the “allgam” model (for example) was written as: 

y ~ ti(year, k = 9) + ti(month, bs = 'cc', k = 6) + ti(flow0) + ti(flow1) + ti(flow2) + ti(flow3) + ti(rain0) + 

 ti(rain1) + ti(rain2) + ti(rain3) + ti(air_temp) + ti(water_temp) 

The mgcv package in R offers three types of smooth terms for a GAM model: s() which are spline 

smooths, te() which are full tensor product smooths, and ti() which are tensor product interaction 

smooths. Use of ti() terms is appropriate when interaction terms and main effects occur 
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simultaneously, or when the interactions are on difference scales. The basis dimension (k) of each 

term has a default value of 5, which gives a curve with a maximum of k – 1 = 4 degrees of freedom. 

Model fitting returns the “reference degrees of freedom” of each term. If this is near k, k may be 

increased, and the model refitted to allow greater flexibility. Based on early model fits, k was 

increased to 9 for the year (trend) term and 6 for the month (seasonal) term.  

The default smoothing basis function is bs = ‘cr’ which is a cubic regression spline. The bs = ‘cc’ option 

gives a periodic/cyclic cubic regression spline, which is suitable for periodic covariates such as month 

(seasonal). 

By default, GAM uses a maximum likelihood approach to automatically determine the optimal 

smoothness of the model. This can result in curvilinear terms being reduced to linear terms. Terms 

can optionally be removed completely if they are not significantly different to zero (using the select = 

TRUE option in mgcv). However, since forcing terms to zero may exaggerate the importance of the 

remaining terms, this option was not used in the current study. 

The result of fitting a GAM is the best-fit smooth function for each term. The GAM algorithm uses 

maximum likelihood to trade-off between model smoothness and goodness-of-fit to the data. Each 

term and its uncertainty can be plotted, and their magnitudes compared. This includes the trend 

term (e.g., fi(time)) which estimates the remaining trend in the data after the effects of the 

covariates have been accounted for.  

The statistical significance of each term in the GAM is assessed using an F test (and associated p-

value), which tests the null hypothesis that the term is everywhere zero. If the covariates explain the 

changes in the data such that the trend term is not needed, the trend term will not be statistically 

significant (i.e., not statistically different from zero). If the trend term is statistically significant, on the 

other hand, this indicates that the covariates do not fully explain the changes in the data and an 

unexplained trend is still present. 

Statistical significance does not test whether the model is a good model of the data; this is done by 

examining the model residuals. The distribution of model residuals can be plotted to check that the 

regression assumptions have been met (e.g., independent, normally distributed residuals). If the 

residuals are not normally distributed this can indicate that model is not flexible enough to represent 

the data. The residuals are also used to assess the model’s goodness-of-fit, for example to calculate 

the Nash-Sutcliffe Model Efficiency (NSE = the proportion of the variance in the data that is explained 

by the model). NSE should be high relative to 0 to indicate that the model is a good representation of 

the data. Very high values of NSE (approaching 1) can indicate overfitting, but this was avoided in the 

current study by using the method = "REML" option in mgcv.  

In order to compare the GAM trend results with the Thiel-Sen results, a linear slope was calculated 

from the GAM curve for each 5-year period (see Section 8.1). As in Yang and Moyer (2020), this was 

done by connecting the two endpoints of the GAM curve for each 5-year period (taken as the 

observation times of the first and last data point in that time period) with a straight line. The slope of 

this line segment was interpreted as the slope of the GAM for this period. Treating the two endpoints 

as being independent also allowed us to calculate confidence intervals for these slopes (Yang and 

Moyer, 2020). 

The reported trends estimate the rate of increase of E. coli once the effects of the covariates have 

been accounted for. For example, flow-adjustment attempts to remove the effects of flow, and so 
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any trend in the flow-adjusted data represents E. coli increases for the hypothetical case where flow 

has remained constant over time, and any flow-driven increases in E. coli have been filtered out.  

8.4 Uncertainty, significance and strength of evidence 

The uncertainty of and strength of evidence for the Thiel-Sen and GAM slope estimates in this study 

were expressed as credible intervals (CrI) and significance levels (α-values). Traditional significance 

tests and p-values were not used for assessing the slope estimates. The 90% credible interval 

reported for each slope estimate is an interval thathas a 90% probability of containing the true slope.  

The strength of evidence is an alternative to the traditional “p-value” (McBride et al. 2014; McBride, 

2019), andgives the probability that trend estimate has the correct sign (positive or negative). The 

strength of evidence probability can be reported using category labels such as “virtually certain” (99–

100%), “extremely likely” (95–99%), “very likely” (90–95%) and “likely” (66–90%) (Table 3). 

The GAM approach (as implemented in the mgcv package in R) also reports the goodness of fit of the 

fitted model, and the effective degrees of freedom (edf), F-statistic, and p-value for each term in the 

model (Table 4). The effective degrees of freedom (edf) describes the curvature of the fitted model 

term; for example, edf = 1 means that the fitted term was linear, edf > 1 means that the fitted term 

was curvilinear, and edf = 0 means that the fitted term has been dropped from the model. The F-

statistic and corresponding p-value for each term indicate the overall statistical significance of the 

term, i.e., whether there is sufficient evidence that the term is not zero. However, it does not tell us 

whether the term is important, i.e., whether it explains much of the variation in the data. This can be 

assessed by comparing the Nash-Sutcliffe Model Efficiency (NSE) and Akaike Information Criterion 

(AIC) of alternative models; the former describes the proportion of variance in the data that is 

explained by the model, and the latter supplements this by adjusting for model complexity—a lower 

AIC value indicates a better fit to the data, but if two models have AIC values that differ by less than 2 

then the simpler model is preferred. 

In the following sections we apply these models and assessment process in two test case 

catchments, where we identify the relative strengths and weaknesses of the approaches. We then 

apply the most useful approaches more generally to all sites across the region that satisfy data 

adequacy requirements. 

Table 3: Intergovernmental Panel on Climate Change likelihood categories (from McBride, 2019).  

Term  Likelihood of outcome 

Virtually certain 99–100% 

Extremely likely  95–99% 

Very likely  90–95% 

Likely  66–90% 

About as likely as not  33–66% 

Unlikely  10–33% 

Very unlikely  5–10% 

Extremely unlikely  1–5% 

Exceptionally unlikely  0–1% 
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8.5 Example 1 (Waihou River at Whites Road, no flow data) 

Figure 23 shows an example of how Sen slope trends are estimated with no covariates (“none”) for 

the periods 2000-2004, 2005-2009, 2010-2014, and 2015-2019, as well as the associated GAM model 

with no covariates (“none”). These data are for the Waihou River at Whites Road site, just 

downstream from the Blue Spring. No flow information was available at this site, although flow from 

a different river (Oraka Stream at Lake Road) was used for flow adjustment later. 

Figure 23 and subsequent figures show the following information: 

▪ The title shows the name of the water quality monitoring site (e.g., stream name and 

road name), along with its WRC code (Section 6.1) and the code of the flow site used 

for flow-adjustment (Section 7.7). 

▪ The E. coli measurement data used for trend analysis are shown as dark orange points. 

▪ Extreme outliers are circled in light orange (there is one above the statistics table and 

one at (2004, 1)). 

▪ Censored values are shown as dark green circles (there are none in this data set). The 

imputed value is shown as a dark orange point (see Section 6.3). 

▪ Points that were dropped from the analysis due to missing covariates are shown as a 

blue circle (there were none in this data set). 

▪ The thin horizontal dotted (or solid) lines show the concentrations delimiting state 

attribute bands in the the National Policy Statement for Freshwater Management 2020 

(New Zealand Government, 2020). The overall attribute band for E. coli is calculated 

from four separate metrics including the median and 95th percentile concentrations. 

For median concentrations, 130 CFU/100 mL separates the A/B/C bands from the D 

band, while 260 CFU/100 mL separates D from E. For 95th percentile concentrations, 

540 (solid), 1000, or 1200 CFU/100 mL lines separate A from B, B from C, and C from 

D/E bands respectively.  

▪ The Sen slopes for each 5-year period are shown as brown line segments. In addition, 

the total change in each 5-year period is indicated by a vertical brown arrow, to 

facilitate comparison with the GAM model change for the same period (vertical green 

arrows). The transparency of the lines and arrows indicates the statistical strength of 

evidence that the trend is increasing or decreasing in that period, e.g., virtually certain, 

very likely, likely, etc., (see Section 8.4, Table 3). 

▪ The GAM model trend (i.e., year term) is shown as a thick green line with a 95% 

confidence interval band. Vertical green arrows show the change over the 5-year 

period. The transparency of the arrows indicates the statistical strength of evidence 

that the trend is increasing or decreasing in each period. 

▪ The GAM model fit to the data (including the covariate terms) is shown as a thin pink 

line (see Figure 24 and Figure 25). For GAM models that do not include covariates (e.g., 

Figure 23), this is equal to (and occluded by) the GAM model trend (thick green line). 
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The table of statistics describes the fit for each term of the GAM model on the left-hand side, and 

summary statistics for the data set and the GAM model fit in the right-hand column. Details are 

provided in Table 4. 

Correcting for season (“seas”, Figure 24) makes little difference to the trend analysis at this site. The 

model fit (NSE, Nash-Sutcliffe Model Efficiency) of the GAM model increased slightly from 14.8% to 

20.7%, indicating that the seasonal model explains a slightly greater proportion of the variation in the 

data (the thin pink curve in Figure 24). The Akaike Information Criterion (AIC) decreases from 356.8 

to 351.2; the difference is greater than 2 which indicates that the additional model complexity is 

justified by the data. 

Adding rain and temperature covariates (“raingam”, Figure 25) improved the model fit NSE 

considerably, to 41.9% (the thin pink curve in Figure 25), and the AIC dropped to 315.7. The 

estimated trend (the thick green curve and confidence band in Figure 25) remained similar. Based on 

its high F statistic in the GAM table (Figure 25), rain1 (i.e., catchment average daily rainfall (mm) on 

the previous day) was an effective predictor in the improved model fit. Interestingly the GAM fitting 

procedure reduced the rain0, rain1, rain2, rain3, at (air temperature) and wt (water temperature) 

response terms to linear responses (see Section 8.3), indicated by their effective degrees of freedom 

(edf) being equal to 1.  

This probably means that the data contained insufficient information to determine any non-linear 

component in the responses. Note also that the month, rain2 and rain3 terms were not significant 

(ns) in this model, which indicates that there was insufficient information to be 95% confident in the 

reported sign of these terms. 

For each GAM model fit, model residuals and model terms were checked. The model residual and 

model term analysis for Figure 25 is shown in Figure 26. The E. coli data and model predictions in 

these plots are all given in Box-Cox transformed coordinates (Section 6.4). The top four subplots 

explore the distribution of the residuals, which are assumed to be independent and identically and 

symmetrically distributed around zero. The quantile-quantile subplot (“QQ plot of residuals”) 

compares the distribution of the residuals to a normal distribution; the deviation in this example 

shows that the residuals have “fat” tails compared with a normal distribution, which is common with 

real world data. The “Residuals vs linear predictor” subplot shows the independence and changing 

variance of the model residuals against the GAM model prediction (of E. coli concentration in Box-

Cox transformed coordinates), and the “Histogram of residuals” subplot shows the same data plotted 

as a histogram. The “Observed vs fitted values” subplot shows the model prediction (“Response”) 

directly against the data (“Fitted values”); these should lie along the 1:1 line. 

The bottom half of Figure 26 shows the individual terms of the GAM model, one for each covariate. 

The x-axis shows the covariate values, and the y-axis shows the term’s corresponding contribution to 

the GAM model (in Box-Cox transformed E. coli units). The uncertainty band around each generalised 

term indicates whether the term is credibly different from zero. In this example, the ti(year) term is 

the trend shown in green in Figure 25, the ti(month) term is the seasonal cycle (after accounting for 

rain and temperature), and the remaining terms in this case show a linear response to rain0, rain1, 

rain2, rain3, at (air temperature) and wt (water temperature). The uncertainty envelopes for month, 

rain1 and rain2 are wide enough to encompass the x-axis, which corresponds to their lack of 

statistical significance as reported in Figure 25. The importance of ti(rain1) relative to ti(rain0) is 

reflected in its larger range of y-values. 
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Table 4: Explanation of statistics included in the trend plots.  

Statistic Description 

term GAM term 

edf Effective degrees of freedom of the model term (e.g., 1 = linear, 2 = quadratic) 

Ref.df Reference degrees of freedom (not used) 

F F statistic for the term (weighted proportion of variance explained) 

p-value Probability that the F value this large is by chance 

sig Statistical significance of the term 

misc Miscellaneous statistics 

ncens Number of censored values (circled in dark green) 

ndrop Number of dropped rows due to missing covariates (blue circles) 

noutlier Number of extreme outliers (circled in light orange) 

ny Total number of data values (y) 

ncomplete Number of data rows used for trend estimation 

lambda Box-Cox transformation lambda 

sd y Standard deviation of y (rmse should be smaller than this) 

shap y p-value in Shapiro-Wilks test of normality on data (y). Small values warn that the data may not be 
sufficiently normal. 

aic Akaike Information Criterion of model. Used for comparing models. 

shap res p-value in Shapiro-Wilks test of normality on the residuals. Small values warn that the data may 
not be sufficiently normal. 

rmse Root mean squared error of prediction (standard deviation of the residuals). This should be 
smaller than sd y. 

nse Nash-Sutcliffe Model Efficiency (proportion of variance in y explained by the model). nse = 1 – 
(rmse / sd y)2 
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Figure 23: Trends and 5-year changes in E. coli concentrations for the Waihou River at Whites Road (no 
adjustment).  Sen slope (brown line segments and arrows) and GAM (green curve and arrows) without 
covariates (“none”). Full plot details are explained in Section 8.5 and Table 4. 

 

 

Figure 24: Trends and 5-year changes in E. coli concentrations from the Waihou River at Whites Road 
(seasonal adjustment).  Seasonal Sen slope (brown line segments and arrows) and GAM (green curve and 
arrows, no covariate), and with a seasonal covariate (thin pink line “seas”). Full plot details are explained in 
Section 8.5 and Table 4. 
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Figure 25: Trends and 5-year changes in E. coli concentrations from the Waihou River at Whites Road 
(seasonal, rain and temperature adjustment).  Seasonal Sen slope (brown line segments and arrows) and GAM 
(green curve and arrows – no covariates), and with seasonal, rainfall, air temperature (at) and water 
temperature (wt) covariates (“raingam”) – pink line. Full plot details are explained in Section 8.5 and Table 4. 

 

8.6 Example 2 (Waitoa River at Landsdowne Road, flow data) 

A second example is given in Figure 27 for a site which has index-of-flow data (from a nearby flow 

recorder on the same stream). This data set had two censored values which are shown as dark green 

circles, their imputed values are shown as dark orange points (Section 6.3). 

The Sen slope estimates in Figure 27 (based on the raw data without covariate adjustment, “none”) 

identified decreasing E. coli concentrations during the 2010-2014 period followed by increasing 

concentrations during the 2015-2019 period. The Sen slope estimates for the 2000-2004 and 2005-

2009 periods were quite sensitive to the small number of data points collected during this time. The 

fitted GAM curve followed an S-shape, similar to the direction of the Sen slope estimates but far less 

steep.  

When adjusting for flow (“flow”, Figure 28) two data points (indicated by blue circles) had to be 

dropped due to missing flow data at that time. Flow-adjustment made little difference to the Sen 

slope estimates. This is not surprising since the E. coli concentration-flow relationship is very flat, 

showing weak flow-dependence for this site (Figure 22). Including flow as a covariate in the GAM 

model, however, made a substantial difference to the goodness-of-fit, with NSE increasing markedly 

from 8.0% to 48.4%, and the AIC decreasing from 156.8 to 74.4. This was unexpected, given the weak 

flow-dependence. Analysis of the model residuals and model terms (Figure 29) shows that this 

increase in predictive power was achieved by combining the information in flow0 (mean daily flow 

on the day of sampling) and flow3 (mean daily flow three days prior to sampling)—both the ti(flow0) 
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and ti(flow3) terms have significant and opposite slopes. So, E. coli is highest on days when it rained 

but did not rain 3 days previously, whereas E. coli is lowest on days when it didn’t rain but it rained 3 

days previously. This could be interpreted as E. coli accumulating when it doesn’t rain, and then 

becoming mobilised during rain events. However, caution should be exercised when interpreting 

regression models; compared with process-based models, regression models are good for making 

accurate predictions rather than providing meaningful interpretations of the underlying processes. 

This example does however demonstrate that inclusion of lagged flow in the model improved 

prediction of E. coli dynamics at this site and suggests that lagged drivers should be examined more 

thoroughly in future work. 

Including seasonal Sen analysis of the flow adjusted data (Figure 30) did not change the Sen slope 

estimates. However, the strength of evidence for trends in the data was reduced, since seasonal Sen 

analysis only compares data from the same month of the year, resulting in less comparisons overall 

and lower statistical power. Similarly, including season as an additional covariate in the GAM model 

(“flowseas”) had little effect on the estimated trend, and only gave a small additional improvement 

to the goodness-of-fit, with NSE increasing to 53.5% and AIC dropping to 65.1.  

Including the remaining covariates (i.e., rainfall, water temperature and air temperature; “allgam”, 

Figure 31) allowed a non-linear trend to be identified, although less steep that the trend inferred 

from the raw data (Figure 27). The additional covariates improved model fit NSE to 64.7% and 

dropped AIC to 43.9, indicating a more explanatory model where additional complexity was justified 

by the data. In this model the seasonal (“month”) term was eliminated from the model (effective 

degrees of freedom (edf) = 0), indicating that this covariate provided no additional information 

beyond what was provided by the other covariates.  

A subsequent GAM model fit without flow data (“raingam”, Figure 32) resulted in a NSE of 59.2% and 

the AIC of 57.3—only slightly less favourable than the model with flow included. Since flow data are 

not available at many sites, this outcome suggests that rainfall may be a useful alternative covariate 

to flow. This has widespread potential application because NIWA’s VCSN interpolated weather data 

set is able to generate historical daily rainfall estimates for the whole of New Zealand. 

In all of these models, the inclusion of covariates explained a considerable proportion of the variance 

in the E. coli data. The covariates could not, however, fully account for trends in E. coli through time. 

This suggests that additional, currently unidentified factors contribute substantially to the observed 

trend, and further investigation will be required to identify these covariates . 
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Figure 26: GAM residuals and model terms for E. coli at Waihou River at White’s Road (seasonal, rain and 
temperature adjustment). This is an analysis of the GAM model fit shown in Figure 25. 
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Figure 27: Trends and 5-year changes in E. coli concentrations from the Waitoa River at Landsdowne Road 
(no adjustment). Sen slope (brown line segments and arrows) and GAM (green curve and arrows) without 
covariates (“none”). Full plot details are explained in Section 8.5 and Table 4. 

 

 

Figure 28: Trends and 5-year changes in E. coli concentrations from the Waitoa River at Landsdowne Road 
(flow adjustment). Flow-adjusted Sen slope (brown line segments and arrows) and GAM (green curve and 
arrows) with a flow covariate (“flow”). Full plot details are explained in Section 8.5 and Table 4. 
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Figure 29: GAM residuals and model terms for E. coli at Waitoa River at Landsdowne Road (flow 
adjustment). This is an analysis of the GAM model fit shown in Figure 28. 
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Figure 30: Trends and 5-year changes in E. coli concentrations from the Waitoa River at Landsdowne Road 
(seasonal and flow adjustment). Flow-adjusted seasonal Sen slope (brown line segments and arrows) and GAM 
(green curve and arrows) with seasonal and flow covariates (“flowseas”). Full plot details are explained in 
Section 8.5 and Table 4. 

 

 

Figure 31: Trends and 5-year changes in E. coli concentrations from the Waitoa River at Landsdowne Road 
(seasonal, flow, rain and temperature adjustment). Flow-adjusted seasonal Sen slope (brown line segments 
and arrows) and GAM (green curve and arrows) with seasonal, flow, rain, air temperature (at) and water 
temperature (wt) covariates (“allgam”). Full plot details are explained in Section 8.5 and Table 4. 
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Figure 32: Trends and 5-year changes in E. coli concentrations from the Waitoa River at Landsdowne Road 
(seasonal, rain and temperature adjustment). Seasonal Sen slope (brown line segments and arrows) and GAM 
(green curve and arrows) with seasonal, rain, air temperature (at) and water temperature (wt) covariates 
(“raingam”). Full plot details are explained in Section 8.5 and Table 4. 

 

8.7 E. coli trends for all sites 

Sen slope and GAM trend analysis was carried out for all 82 catchments for the “none”, “seas” and 

“raingam” methods, and for the 56 catchments with index-of-flow data for the “flow”, “flowseas” 

and “all gam” methods (Sections 8.1 to 8.6). The analysis was carried out on the Box-Cox transformed 

data (Section 6.4), and the Sen slope and GAM trend estimates were then back-transformed and 

expressed in relative change units (percentage increase per year across each 5-year period). 

Collecting the trend estimates from the Sen slope and GAM approaches for the Waikato River and for 

each subregion of the Waikato region, we can see the differences between methods and time 

periods at each site.  

These results are summarised in Figure 33A-H (consisting of 8 sets of plots) for: 

A. The main Waikato River sites (ordered from south to north along the river). 

B. Tributaries to the lower Waikato River. 

C. Tributaries to the upper Waikato River. 

D. Inflows to Lake Taupo. 

E. Waipa River and tributaries. 
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F. Hauraki. 

G. Coromandel. 

H. West Coast.  

In each set of plots the Sen slope and GAM trend estimates at each site are plotted for each period 

(2000-2004, 2005-2009, 2010-2014, 2015-2019) and each covariate model (“none”, “seas”, 

“raingam”, “flow”, “flowseas”, “allgam”).  

Within each subplot: 

▪ The GAM trend estimates for each covariate model (“none”, “seas”, “raingam”, “flow”, 

“flowseas”, “allgam”) are shown as filled circles. The y-axis position of the centre of 

this circle is the estimated E. coli trend for that period (% increase in E. coli 

concentration per year).  

▪ The corresponding Sen slope trend estimates (“none”, “seas’, “flow”, “flowseas”) are 

shown as open squares (i.e., the middle/largest of the three squares). The y-axis 

position of the centre of this square is the estimated E. coli trend for that period (% 

increase in E. coli concentration per year). 

▪ The size of these symbols (the central symbol in the case of the Sen slope markers) 

shows the Strength of Evidence that the estimated trend is positive or negative as 

shown (McBride, 2019); e.g., “virtually certain to be positive”.  

▪ The 90% credible interval for each GAM trend estimate is shown by a vertical line 

segment (these tend to be very short when the trend estimate has a high strength of 

evidence). These represent the range of trend slopes that is supported by the data 

(with the top and bottom 5% removed). 

▪ The 90% credible interval for each Sen slope trend estimate is shown by two small 

squares (truncated to the plot window if necessary). These represent the range of 

trend slopes that is supported by the data (with the top and bottom 5% removed). 

▪ The horizontal dotted line marks the x-axis. 

These plots make it easy to compare trend estimates (and uncertainty) between time periods, 

between covariate models, and between GAM and Sen slope approaches. 

Several general results are apparent from these plots: 

1. Overall, GAM gives similar direction of trend to Sen Slope. 

2. GAM trend estimates were generally very similar across the 6 covariate models. Although 

including covariates increased model fit substantially (i.e., explained short term variation in the 

data, Section 8.10), the long-term trend was not accounted for by the covariates. Additional 

covariates need to be identified for inclusion in the model to fully explain the observed 

trend. 
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3. Sen slope estimates (squares) tend to exaggerate the trend compared with GAM models 

(circles). This is partly because we are using Sen slope analysis with less than the 

recommended amount of data (Section 8.1), and partly because the GAM models, by taking 

into account the entire data set simultaneously, are less prone to “end effects” in each 5-year 

window.  

4. Seasonal Sen slope analysis tends to have greater uncertainty than non-seasonal Sen slope 

analysis. This is because of the smaller number of slopes compared in seasonal Sen analysis. 

5. Sen slope and GAM analysis both indicated that most sites have increasing/accelerating trends 

for E. coli concentrations (even after covariate adjustment), particularly in the 2015-2019 

period. This is still the case in the models which have adjusted for season, rain, flow and other 

covariates. That is, the increasing trend in E. coli from about 2015 is not explained by the 

covariates we have considered here. 

6. The rain + temperature models (“raingam”) give similar results to the rain + flow + 

temperature models (“allgam”) but do not require flow data (which is not always available). 

This suggests that rain is a useful proxy for flow. 

Figure 34 summarises the statistical significance of the different terms in the different GAM models. 

These indicate the probability that the term is not zero. They do not however directly indicate the 

importance of the term (e.g., the proportion of the model variance explained by each term). The 

following general observations can be made: 

1. The “month” term, accounting for seasonality, was generally only significant in the “seas” and 

“flowseas” models. Inclusion of temperature and rainfall, both of which (particularly the 

former) are strongly seasonal, tended to reduce the significance of month per se. 

2. Flow0 (i.e., flow(t-0)) was usually a significant covariate in the “flow” and “flowseas” models, 

but lagged flow (flow1, flow2, flow3) were usually not significant. The addition of rain in the 

“allgam” models reduced the significance of flow0, which suggests that flow and rain provide 

similar information. 

3. The air temperature terms (in the “raingam” and “allgam” models) were rarely statistically 

significant. The water temperature terms (in the “raingam” and “allgam” models) were also 

generally not statistically significant—suggesting that air and water temperature at time of (or 

up to 3 days prior to) sampling are not important explanatory variables. Air and water 

temperatures in a longer time window might be important in explaining E. coli 

measurements however and should be explored in future work. 

4. Rain1 (i.e., rain(t-1)) was the most significant rain term in the “raingam” and “allgam” models. 

Rain on the day of sampling (rain0) was not usually significant. Rain2 was also significant in 

some catchments. That is, lagged rain is a useful predictor, and can substitute for flow where 

this is not readily available. 
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Figure 33A 
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Figure 33B 
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Figure 33C 
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Figure 33D 

 
 
 
 
 
 
 



 

70 E. coli trends in Waikato streams 

 

Figure 33E 
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Figure 33F 
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Figure 33G 
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Figure 33H 

 

Figure 33: Five-year trends in E. coli concentration (% increase/year) in the Waikato River and regional 
streams according to subcatchment groupings.  Groups A-H are defined on page 63. Trends estimated using 
Sen slope (squares) and GAM (circles) methods with different covariate corrections. Strength of evidence for 
trend sign is indicated by the size of the symbols, and uncertainty (90% credible intervals) by the small 
squares/vertical lines respectively. Further details are given in Section 8.7 (page 63).   
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Figure 34: Summary of statistical significance of GAM covariate terms. 
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8.8 E. coli trends by subregion 

The Sen slope and GAM trend estimates from Figure 33 are summarised in Figure 35 and Figure 36, 

respectively, for each of the 8 subregions. Results for “none”, “seas” and “raingam” are available for 

all 82 sites, but results for “flow”, “flowseas” and “allgam” are only available for the 56 sites with 

index-of-flow data available at nearby sites.  

Figure 35 shows that the Sen slope estimates may have large magnitude, low strength of evidence, 

and considerable variability within a subregion, especially in the 2000-2004 and 2005-2009 periods. 

This is partly a consequence of the Thiel-Sen approach not being well-suited to use with less than 5 

years of monthly data. Nevertheless, the general pattern of downward trends in E. coli (improving 

water quality) in 2010-2014 followed by upward trends in E. coli (deteriorating water quality) in 

2015-2019 is apparent. For example, Seasonal Sen slopes (“seas” model) were negative (improving) 

in 2010-2014 at 59 of 82 (72%) of sites, with a median trend of -9% per year, but positive 

(deteriorating) in 2015-0219 at 69 of 82 (84%) of sites, with a median trend of +13% per year. 

The GAM trend estimates in Figure 36 gave similar but more consistent results. For example, GAM 

slopes (“raingam” model) were negative (improving) in 2010-2014 at 39 of 82 (48%) of sites, with a 

median trend of -2% per year, but positive (deteriorating) in 2015-2019 at 60 of 82 (73%) of sites, 

with a median trend of +7% per year. The following general observations can be made: 

▪ The six GAM models all gave similar trend estimates, regardless of which covariates 

were accounted for.  

▪ There is strong evidence for a region-wide ‘up-swing’ in stream E. coli concentrations 

in the 2015-2019 period, even after accounting for covariates. This includes the Lake 

Taupo streams, which generally did not show strong trends in the earlier time periods.  

▪ This was preceded by a period of generally decreasing trends in the period 2010-2014, 

although this had a smaller magnitude than the increase in 2015-2019.  

▪ In earlier periods there were less pronounced and more variable trends. 

8.9 E. coli trends overall summary 

The E. coli trends for the Waikato region are summarised in Table 5 and Table 6 for the Thiel-Sen and 

GAM methods respectively (as shown in Figure 35 and Figure 36). For each five-year period and each 

set of covariate adjustments, the number of sites classified as having likely negative, indeterminate, 

or likely positive trends is shown. A likely trend was defined as one having a 66% or greater Strength 

of Evidence. The overall median trend slope (%/year) is given, as well as the median slope for each 

classification.  

The number and magnitude of negative and positive trends were roughly equal in 2000-2004, 

according to both analysis methods. Water quality began to improve in 2005-2009 (predominance of 

negative trends). This was less marked in the Thiel-Sen results compared with the GAM results, 

possibly due to the low frequency of water quality samples at this time (prior to 2013, E. coli 

measurements were only taken four times a year). Negative trends (improving water quality) 

continued to dominate in 2010-2014, while positive trends (deteriorating water quality) dominated 

in 2015-2019, as previously noted.    
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Figure 35: Summary of 5-year trends in E. coli concentration (% increase/year) by subregion (Thiel-Sen 
Slope Estimator). Estimated using the Thiel-Sen Slope Estimator with or without seasonal and/or flow 
adjustment. Strength of evidence for trend sign is indicated by the size of the symbols. Further details are given 
in Section 8.7. 
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Figure 36: Summary of 5-year trends in E. coli concentration (% increase/year) by subregion (GAM).  
Strength of evidence for trend sign is indicated by the size of the symbols, and uncertainty (90% credible 
intervals) by the vertical lines. Further details are given in Section 8.7. 
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Figure 37 and Figure 38 map the distribution of upward E. coli trends across the Waikato region for 

the 2015-2019 period using Seasonal Sen (“seas”) and rainfall-adjusted GAM (“raingam”) models 

respectively. These correspond to the “seas’ values from Figure 35 and the “raingam” values from 

Figure 36 for 2015-2019. The predominance and strength of increasing E. coli (red) trends is clear in 

both analyses, in all subregions across the Waikato. There is no obvious spatial pattern, indicating 

that the increasing trends of interest are found in all subregions. Since land use varies considerably 

between subregions, this means that the observed trends are unlikely to be linked to land use. 

Instead the cause must be one that affects all subregions, such as climate or microbial measurement 

methodology. 

Table 5: Summary of Waikato E. coli trends (%/year) assessed using Thiel-Sen analysis. N = total number 
of sites, N>0, N=0, N<0 = number of sites with likely positive, indeterminate and likely negative trends 
respectively. Med = median trend (%/year), Med<0, Med = 0, Med >0 = median trend (%/year) of sites with 
likely positive, indeterminate and likely negative trends respectively. Individual values are plotted in Figure 35.  

 

Period Adjust N N<0 N=0 N>0 Med Med<0 Med=0 Med>0 

2000-2004 none 82 33 6 38 0 -0.142 -0.008 0.130 

 seas 82 30 14 35 0.027 -0.172 0.023 0.157 

 flow 56 28 9 19 -0.022 -0.116 0.003 0.136 

 flowseas 56 32 7 17 -0.018 -0.127 0.024 0.113 

2005-2009 none 82 33 13 31 0 -0.105 0 0.115 

 seas 82 39 13 25 0 -0.147 0.039 0.134 

 flow 56 22 11 23 0.002 -0.152 0 0.107 

 flowseas 56 25 15 16 -0.010 -0.152 0.010 0.119 

2010-2014 none 82 60 6 6 -0.070 -0.131 0 0.122 

 seas 82 54 12 11 -0.078 -0.138 0.025 0.113 

 flow 56 43 4 9 -0.081 -0.122 -0.005 0.051 

 flowseas 56 41 10 5 -0.099 -0.143 0.013 0.100 

2015-2019 none 82 7 0 67 0.127 -0.097 - 0.143 

 seas 82 6 4 69 0.131 -0.092 -0.011 0.154 

 flow 56 7 3 46 0.107 -0.129 0 0.136 

 flowseas 56 6 2 48 0.117 -0.107 0.009 0.137 
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Figure 37: Map of 2015-2019 E. coli trends (%/year) assessed using Thiel-Sen analysis (with seasonal 
adjustment). Values shown are the 2015-2019 “seas” trends from Figure 35. Increasing trends are coloured red 
and decreasing trends are coloured blue. Symbol size indicates statistical Strength of Evidence, matching Figure 
35. Note predominance of red (increasing trends). 
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Table 6: Summary of Waikato E. coli trends (%/year) assessed using GAM analysis. N = total number of 
sites, N>0, N=0, N<0 = number of sites with likely positive, indeterminate and likely negative trends 
respectively. Med = median trend (%/year), Med<0, Med = 0, Med >0 = median trend (%/year) of sites with 
likely positive, indeterminate and likely negative trends respectively. Individual values are plotted in Figure 36.  

  

Period Adjust N N<0 N=0 N>0 Med Med<0 Med=0 Med>0 

2000-2004 none 82 31 23 28 -0.002 -0.046 0 0.053 

 seas 82 25 31 26 -0.002 -0.056 -0.004 0.059 

 raingam 82 23 28 31 0.009 -0.044 -0.001 0.077 

 flow 56 16 20 20 0.004 -0.063 -0.005 0.087 

 flowseas 56 15 21 20 0.003 -0.061 0 0.088 

 allgam 56 19 18 19 -0.003 -0.047 -0.003 0.068 

2005-2009 none 82 39 29 14 -0.014 -0.042 -0.003 0.037 

 seas 82 33 36 13 -0.013 -0.047 -0.004 0.041 

 raingam 82 26 44 12 -0.012 -0.046 -0.002 0.048 

 flow 56 28 19 9 -0.013 -0.043 0.001 0.030 

 flowseas 56 21 24 11 -0.010 -0.043 -0.001 0.035 

 allgam 56 18 28 10 -0.011 -0.048 -0.002 0.049 

2010-2014 none 82 39 21 22 -0.010 -0.037 -0.001 0.026 

 seas 82 36 31 15 -0.013 -0.059 -0.001 0.034 

 raingam 82 39 31 12 -0.016 -0.060 0.007 0.036 

 flow 56 27 18 11 -0.009 -0.073 0.003 0.030 

 flowseas 56 25 22 9 -0.011 -0.072 0.002 0.031 

 allgam 56 25 25 6 -0.011 -0.055 0.002 0.028 

2015-2019 none 82 10 13 59 0.056 -0.032 -0.002 0.091 

 seas 82 7 15 60 0.072 -0.035 0.001 0.101 

 raingam 82 3 19 60 0.067 -0.023 0.005 0.095 

 flow 56 2 10 44 0.070 -0.041 0.003 0.084 

 flowseas 56 1 12 43 0.073 -0.056 0.002 0.095 

 allgam 56 1 13 42 0.066 -0.044 0.004 0.079 

 

 



 

E. coli trends in Waikato streams  81 

 

 

Figure 38: Map of 2015-2019 E. coli trends (%/year) assessed using a GAM model (seasonal, rain and 
temperature adjustment). Values shown are the 2015-2019 “raingam” trends from Figure 36. Increasing trends 
are coloured red and decreasing trends are coloured blue. Symbol size indicates statistical Strength of 
Evidence, matching Figure 36. Note predominance of red (increasing) trends. 

 

8.10 Comparison of GAM Models 

Performance statistics were collected for each GAM model (defined on page 49) as described in 

Table 4.The NSE statistic indicates the proportion of variance in the data that is explained by the 

model. Models with high NSE are desirable, since they more successfully explain the data in terms of 

covariates and any remaining trend (i.e., the “year” term). The unexplained portion of the variance (1 

– NSE) is due to model inadequacy (e.g., missing covariates or interactions) plus measurement error 

(typically ±33% error or more for E. coli grab samples, Harmel et al. 2016). The trend represents slow 

changes with time due to anthropogenic or environmental processes that are not included in the 

model (e.g., land use, land or effluent management practices, wild mammal and bird populations).  

Figure 39 summarises the goodness of fit (NSE) of the GAM models. GAM models using no covariates 

(i.e., only year), or only season and year (violin plots on the left hand side of Figure 39), did not 
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explain much of the variation in the data. Including rain and/or flow improved model explanatory 

power considerably. Interestingly, including rain and temperature (“raingam”, purple violin plot in 

Figure 39) gave very good explanatory power (median NSE around 50%)—second only to the all-

inclusive GAM (“allgam”, yellow violin plot in Figure 39). 

These results make the case for using a model such as “raingam” in the future, due its good 

explanatory power and because it reduces dependency on flow data.  

 

Figure 39: Comparison of model fit to E. coli data (NSE) for the GAM models with different covariates. This 
violin plot shows the range and distribution of NSE values, and the horizontal lines show the quartiles, for each 
model across all 82 sites (56 sites for the “flow”, “flowseas” and “allgam” models). 
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9 Turbidity and visual clarity trends in relation to E. coli trends 
This section examines E. coli trends in relation to visual clarity and turbidity trends, to investigate 

whether these covariates might provide additional insight into E. coli trends and drivers.  

Since E. coli measurement currently requires laboratory incubation and is relatively expensive, there 

is interest in finding proxy measurements that may be able to give rapid and potentially cheaper 

(although less accurate) estimates of faecal pollution in a water body. Two potential proxies are 

turbidity and visual clarity. Both of these water quality variables were measured alongside E. coli at 

the WRC sites. 

Turbidity is often proposed as a possible proxy for E. coli, since mobilization of fine sediment and 

faecal bacteria are driven by similar processes (“co-mobilized”, Davies-Colley et al. 2018). 

Correlations between turbidity and E. coli at the WRC sites were shown in Figure 9. 

Visual clarity may be an even better indicator for E. coli for various reasons including better 

reproducibility (Davies-Colley et al. 2018). Visual clarity measurements also have the advantage of 

being a ‘proper’ scientific quantity (measured in SI units) and relatively independent of the 

instrument used (e.g., black disk) (Davies-Colley et al. 2018). Correlations between visual clarity and 

E. coli at the WRC sites were shown in Figure 10. Unlike turbidity, visual clarity is negatively 

correlated with E. coli, with high values of clarity representing good water quality. 

9.1 Waihou and Waitoa examples 

Trends in turbidity and visual clarity trends, were analysed using the same methods as used for E. 

coli. For example, Figure 40 and Figure 41 show the estimated turbidity and visual clarity trends using 

the “raingam” GAM model and the seasonally corrected Sen slope analysis for the Waihou River at 

Whites Road , corresponding to the E. coli trends in Figure 25.  

After taking season, rain and temperature into account, the temporal patterns in turbidity and visual 

clarity are quite different to the E. coli patterns over time (again, after taking season, rain and 

temperature into account). In Figure 25, E. coli remained fairly stable from 2000-2014 and then 

increased (deteriorated) from 2015-2019. Turbidity, in contrast (Figure 40), appears to have 

decreased (improved) from 2000-2004, increased (deteriorated) from 2005-2014, and then remained 

fairly stable from 2015-2019. Visual clarity patterns show a deterioration from 2005-2009 with fairly 

stable conditions in other periods, including 2015-2019. Neither turbidity nor visual clarity show 

strong deterioration in water quality in the 2015-2019 period (according to the GAM model, after 

taking season, rain and temperature into account) whereas E. coli deteriorated.   

Similarly, Figure 42 and Figure 43 show the estimated turbidity and visual clarity trends (using the 

“raingam” GAM model) corresponding to the E. coli trends in Figure 32 for the Waitoa River at 

Landsdowne Road (site 1249_15 with associated flow site 1249_38). Again, turbidity and visual clarity 

patterns over time for the Waitoa River at Landsdowne Road are different to the E. coli patterns over 

time, after accounting for effects of rain, season and temperature. The temporal trend of E. coli 

(Figure 32), has weak evidence of changes from 2000-2014 and then deterioration from 2015-2019, 

whereas turbidity and clarity did not change over 2015-2019 after correction.  

This suggests that E. coli have responded to a different set of drivers compared with turbidity and 

visual clarity over the 2015-2019 period. While E. coli and the optical variables are generally 

correlated (Section 7.1), due to the similar influence of factors such as rainfall, additional drivers 

appear to be having an influence in the more recent results.   
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Figure 40: Trends and 5-year changes in Turbidity from the Waihou River at Whites Road (seasonal, rain 
and temperature adjustment). Seasonal Sen slope (brown line segments and arrows) and GAM (orange curve 
and arrows) with seasonal, rainfall, air temperature (at) and water temperature (wt) covariates (“raingam”). 
Full plot details are explained in Section 8.5 and Table 4. 

 

 

Figure 41: Trends and 5-year changes in visual clarity from the Waihou River at Whites Road (seasonal, 
rain and temperature adjustment).  Seasonal Sen slope (orange line segments and arrows) and GAM (pink 
curve and arrows) with seasonal, rainfall, air temperature (at) and water temperature (wt) covariates 
(“raingam”). Full plot details are explained in Section 8.5 and Table 4. 
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Figure 42: Trends and 5-year changes in Turbidity from the Waitoa River at Landsdowne Road (seasonal, 
rain and temperature adjustment). Seasonal Sen slope (brown line segments and arrows) and GAM (orange 
curve and arrows) with seasonal, rainfall, air temperature (at) and water temperature (wt) covariates 
(“raingam”). Full plot details are explained in Section 8.5 and Table 4. 

 

 

Figure 43: Trends and 5-year changes in Visual Clarity from the Waitoa River at Landsdowne Road 
(seasonal, rain and temperature adjustment).  Seasonal Sen slope (orange line segments and arrows) and 
GAM (pink curve and arrows) with seasonal, rainfall, air temperature (at) and water temperature (wt) 
covariates (“raingam”). Full plot details are explained in Section 8.5 and Table 4. 
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Figure 44: Summary of 5-year trends in Turbidity (% increase/year) by subregion (GAM). Strength of 
evidence for trend sign is indicated by the size of the symbols, and uncertainty (90% credible intervals) by the 
vertical lines. Further details are given in Section 8.7. 
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Figure 45: Summary of 5-year trends in Visual Clarity (%/year) by subregion (GAM). Strength of evidence 
for trend sign is indicated by the size of the symbols, and uncertainty (90% credible intervals) by the vertical 
lines. Further details are given in Section 8.7. 
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9.2 Trends for all sites and summary 

The trend results from the GAM model for all sites are summarised in Figure 44 for turbidity and 

Figure 45 for visual clarity (analogous to Figure 36). It is apparent that overall, turbidity and visual 

clarity do not exhibit a notable deterioration in the 2015-2019; in contrast to E. coli which 

deteriorated over that period (after accounting for the covariates in the GAM models). However 

there does appear to be a widespread improvement in optical water quality in the 2010-2014 period, 

as previously noted for E. coli. 

Maps of the 2015-2019 trend of turbidity and visual clarity are provided in Figure 46 and Figure 47 

respectively, for comparison with Figure 38 for E. coli. 

 

 

Figure 46: Map of 2015-2019 Turbidity trends (%/year) assessed using a GAM model (seasonal, rain and 
temperature adjustment). Values shown are the 2015-2019 “raingam” trends from Figure 44. Increasing trends 
are coloured red and decreasing trends are coloured blue. Circle size indicates statistical Strength of Evidence, 
matching Figure 44. 
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Figure 47: Map of 2015-2019 Visual Clarity trends (%/year) assessed using a GAM model (seasonal, rain 
and temperature adjustment). Values shown are the 2015-2019 “raingam” trends from Figure 45. Increasing 
trends are coloured red and decreasing trends are coloured blue. Circle size indicates statistical Strength of 
Evidence, matching Figure 45. 

 

In summary: 

▪ There is a correlation between E. coli concentrations and the optical variables, as 

shown in Section 7.1. This is probably because all the variables respond to drivers such 

as rainfall. 

▪ After correcting for rainfall, temperature and season, the trends in the optical variables 

were different from the trends in E. coli. This suggests that different factors are 

affecting the trends for the optical parameters to those influencing E. coli trends. 

▪ These observations suggest that it would not be appropriate to use corrected trends in 

either turbidity or visual clarity to infer trends in E. coli.  
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10 Interpretation of E. coli trends 
Our application of both the traditional Mann-Kendall/Thiel-Sen trend detection method and the 

alternative GAM regression method showed that E. coli concentrations generally declined during the 

2010-2014 period but have increased during the 2015-2019 period in most (73% of) catchments in 

the Waikato region (Figure 35 and Figure 36). These results agree with recent assessments by WRC 

(unpublished).  

A key objective of this study was to identify potential drivers responsible for this increase, whether 

natural (e.g., rainfall, temperature) or human induced (e.g., land use, fencing). In the preceding 

analysis, effects of environmental drivers at the time of sampling (water temperature at time of 

sampling, mean daily air temperature, mean daily rainfall, mean daily streamflow) on E. coli 

concentrations were accounted for by incorporating them as explanatory covariates in the fitted 

GAM models. The covariate effects were then removed from the data and the remaining trend was 

reported. Although including water temperature, air temperature, rainfall and streamflow at the 

time of sampling explains a large proportion of the variation in the E. coli measurements at each site 

(Figure 39), they did not explain (account for) the trend in most cases, and the widespread upswing 

in E. coli concentrations over the period 2015-2019 remains unexplained by variations in 

temperature, rain and flow in most catchments. The upswing does not seem to be related to 

immediate changes in the environmental covariates. 

Other explanatory factors were not included in the trend modelling. This is particularly the case for 

data representing human activities intended (in part) to reduce the loss of faecal contaminants to 

water (e.g., changes in livestock density, land use, point source discharges, and fencing); these data 

were not available at sufficiently high temporal resolution to include in the GAM models. In order to 

evaluate whether these factors may be responsible for the observed trends, we looked for 

correlations between the data representing these factors and the 2015-2019 trends estimated using 

the “raingam” model.  

10.1 Livestock density 

Livestock are a major source of faecal contamination, and clearly have an impact on E. coli 

concentrations in Waikato streams (e.g., Figure 15), but livestock densities change relatively slowly 

(Figure 14).  

Median livestock density of each type was calculated from the 2008, 2012, 2019, and 2021 surveys. 

Plotting E. coli trend magnitude against the type and median density of livestock did not reveal any 

correlation (Figure 48); E. coli trends were similar across a wide range of livestock types and 

densities. The E. coli upswing in 2015-20 is not correlated to livestock density. 

Changes in livestock density between the 2008, 2012, 2019, and 2021 surveys were assumed to 

adequately represent the 2005-2009, 2010-2014 and 2015-2019 periods respectively. Plotting E. coli 

trend magnitude against the estimated annual percent change in livestock density did not reveal any 

correlation (Figure 49); E. coli trends are not correlated to changes in livestock density. 
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Figure 48: E. coli “raingam” trend estimates from Figure 36 against median livestock density (stock units 

per hectare). 

 

Figure 49: E. coli “raingam” trend estimates from Figure 36 against 5-year percent change in livestock 

density (stock units per hectare). 
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10.2 Land use and regional variations  

Increases in E. coli concentration might plausibly be associated with land use or changes in land use 

(Sections 3.1 and 7.3).  Plotting E. coli trend estimates from the “raingam” GAM model for the 2005-

2009 and 2015-2019 periods against CLUES land use areas for 2008 and 2018 does not reveal any 

correlation however (Figure 50). Also, the upswing in E. coli occurs with very similar relative 

magnitude (about +7% per year) in almost all Waikato catchments regardless of dominant land use 

(Figure 48). There is a slight increase in trend magnitude with increased proportion of dairy in the 

catchment, but that is weak, and given the small changes in dairy proportion over time, this would 

not explain the widespread increasing concentrations that have occurred recently. We conclude that 

there is no evidence that land use changes are responsible for the recent trends in E. coli 

concentrations. 

The analysis of Section 8.8 indicated that there are not significant variations in recent trends 

between sub-regions. This finding, as well as the lack of sensitivity to land use or stock unit trends, 

suggests that the upswing in E. coli in 2015-2019 is the result of a driver that occurs across the 

region, but that has not been accounted for in the corrections for factors such as rain, temperature, 

and flow. 

10.3 Point sources 

Although we do not have comprehensive information on changes in point sources over time, limited 

information is available that allows commentary on the role of point sources.  

As noted in Section 7.6, there is little relationship between E. coli concentrations at monitoring sites 

and E. coli discharged from point sources in the upstream catchment. This suggests that changes in 

point sources are unlikely to be responsible for recent trends in E. coli. 

We also discussed with Dr Bill Vant from WRC whether there were any recent changes in point 

sources, from his knowledge. From that discussion: 

▪ As documented in a report on nutrients in the Hauraki basin (Vant, 2016), 

improvements in Tirau wastewater may have given rise to improvements in E. coli 

concentrations in the Oraka Stream (site 669_6) from 1991-2015 (8.2% per annum 

reduction). That finding is supported by our GAM analysis (see supplementary 

materials provided to WRC). However, those improvements in monitored water quality 

have since stopped or reversed.  

▪ Treatment of Waihi township wastewater improved around 2005 (to tertiary 

treatment with UV disinfection), which could affect water quality in the Ohinemuri 

River at Queens Head (site 619_19). There does seem to have been a slight long-term 

decrease in concentration at that site (Figure 4), however the Seasonal Sen slope 

model detected a recent increase while the raingam GAM model inferred no recent 

trend. We have examined NIWA’s model of E. coli in the Hauraki catchment 

(Semadeni-Davies et al. 2016), and determined that the treatment plant made less 

than 0.02% contribution to the load at the monitoring site; on that basis, changes in 

treatment of the Waihi discharge are unlikely to be responsible for recent trends at the 

monitoring site. Although recent discharges are not compliant with the consent 

conditions and E. coli concentrations have increased over time (Fiona Forrest, WRC, 

personal communication), even a ten-fold increase in discharge concentrations would 
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not account for much of an increase in stream concentrations, based on the catchment 

model and also on simple dilution calculations. 

▪ Cambridge introduced UV disinfection in 2020, but that is unlikely to show in the trend 

analysis due to the timing of the reduction. 

▪ There were some issues with the Hautapu dairy factory discharging non-faecal E. coli in 

the past due to bacterial growth in a discharge pipe which resulted in a measured spike 

in concentrations at the lower Waikato at Narrows sites around 2002. That source has 

been addressed and would not be associated with recent trends. However, it does 

highlight the potential importance of non-faecal sources of E. coli. 

▪ Consent monitoring of the Te Kuiti wastewater discharge showed that introduction of 

UV disinfection in about 2013 resulted in a two orders of magnitude decrease in E. coli 

concentrations in the discharge (see also Semadeni-Davies et al. 2015). However, the 

stream monitoring site is upstream of the discharge and would not reflect the 

reduction in E. coli in the discharge.  

Our interrogation of a previous budget-based model of the Hauraki catchment (Semadeni-Davies et 

al. 2016) shows that point sources made <1% contribution to non-storm E. coli load at monitoring 

sites. The Waitoa River at Mellon Rd Recorder and Waihou River at Te Aroha had 5.5% and 3.4% 

contribution from point sources, respectively. Similarly, modelling of the Waikato and Waipa rivers 

(Semadeni-Davies et al. 2015) showed a small contribution to E. coli loads from point sources, with 

the largest fraction at Mangamingi (8.6%), near Tokoroa, and about 5% at Horotiu. This suggests that 

point sources make a small contribution to the total E. coli load at most sites, and therefore recent 

wide scale increases in concentrations at monitoring sites are unlikely to be related to changes in 

point sources. A further note in this regard is that changes in point sources are likely to be in the 

direction of reductions in sources due to improved treatment, rather than increases. 

Direct discharges of dairy shed wastewater to streams can affect microbial water quality locally. In 

early catchment modelling of the Waikato River (Alexander et al. 2002), there were about 1800 dairy 

discharges to streams in 1998 based on WRC consents. More recent catchment modelling of the 

Waikato/Waipa (Semadeni-Davies et al. 2015) it was noted that there were 97 discharges directly to 

streams, based on information provided by the WRC, mainly in the Waipa and lower Waikato River. 

The large reduction in the number of discharges direct to streams between 2002 and 2015 (down to 

97), which is likely to have contributed to historical reductions in stream E. coli concentrations. We 

expect that there will have been further reductions in discharges since 2015. However, further 

reduction in the number of these sources is unlikely to have influenced water quality on a 

widespread basis, due to the relatively small number of remaining discharges. From our modelling 

for the Waikato/Waipa from 2015, removing all dairy shed direct discharges would have resulted in a 

mean reduction of 0.8% in E. coli load at monitoring sites, with the largest being 9.8% reduction for 

Kirikiriroa. Similarly, for the Hauraki subregion, the mean reduction would be 1.4%, with the largest 

being 7.6% for the Piako at Kiwitahi. There were about 40 discharges to Hauraki streams at that time. 

Further reductions in discharges since 2015-16 could have resulted in reductions in stream water 

concentrations, however recent trends indicate increasing concentrations. We conclude that recent 

changes in dairy shed discharges are not responsible for recent increasing stream concentrations.  
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Figure 50: E. coli “raingam” trend estimates from Figure 36 against land use type and fraction of 
catchment area. 
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10.4 Fencing……………………………. 

As noted in Section 3.1, access of livestock to streams has been shown internationally to increase 

concentrations of faecal indicators in stream water (e.g., Kay et al. 2018). Hence, we would expect an 

increase in fencing to reduce stream concentrations. As noted in Section 7.5, 5-yearly surveys 

indicate an increase in fencing over time. Most dairy streams are now fenced, although there are 

some variations with stream size and region. Dairy streams are generally fenced more than drystock 

streams. We would expect the increased fencing to improve water quality, and it is possible fencing 

contributed to water quality improvement (decreased E. coli concentrations) in the 2010-2014 period 

(Figure 36). However, we would expect the extent of fencing to have remained the same or to have 

increased over the period 2015-2019, with an associated neutral or improving effect on water 

quality, yet water quality generally deteriorated over this period.   

Attempts to demonstrate a link between the fence survey data and E. coli concentrations in the 

current study were hampered by the nature of the data. Ideally, we would like to determine the 

change in the proportion of river upstream of each sampling site that has been fenced, but the  

available fencing data is not well suited for that purpose. These data are also spatially sparse, making 

a full spatial analysis difficult and subject to considerable uncertainty. 

Overall, we tentatively conclude that recent increases in concentration are unlikely to be related to 

changes in stock access to streams. 

The increased shading of streams from riparian vegetation and potential reduction in bacterial 

disinfection was discussed in Section 3.3. Riparian vegetation surveys (Norris et al. 2020) found no 

significant change in the proportion of woody vegetation in riparian areas between 2002 and 2017, 

or between 2012 and 2017. We therefore consider that increases in riparian vegetation are unlikely 

to have caused the increase in stream concentrations.  
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11 Discussion 
Water temperature, air temperature, rainfall and streamflow helped explain the month to month 

variability in E. coli measurements but did not account for the long-term trends of E. coli 

concentrations. After taking these natural factors into account, recent increasing trends in 

concentration did not seem to be related to changes in stock density, land use, point sources, or 

fencing.   

The results suggest that the observed increasing trend in E. coli in 2015-2019 (approximately +7% per 

year) are likely to be due to factors not included in this study, but are present across pastoral, 

forested and urban land uses (Figure 50). Here we discuss some other potential factors or further 

analysis that might shed further light.  

One possibility is that increases in concentration are an artefact of sampling, handling, or laboratory 

analysis methods. By design, these remain the same over time, but subtle changes can sometimes 

occur. Also, the samples are collected and handled by experienced staff, and the samples are 

analysed in a professional accredited laboratory with standard methods, so the likelihood of errors or 

changes are small. Nonetheless, it is prudent to check for inadvertent changes, especially when 

unexplained trends are evident. To check this, field staff could be interviewed to determine whether 

there have been any recent changes. Another approach would be to compare our results with trends 

from other nearby regions which might use different methods yet have similar land use and drivers 

of water quality. 

Refinements to the GAM analysis might help discriminate between short-term environmental 

influences and longer-term variations that might be more relevant to long-term trends. For example, 

there is considerable seasonal and short-term fluctuation in temperature, which might cloud any 

signal from longer-term, more persistent effects. The GAM procedure assumes that the temperature 

sensitivity established largely on the basis of short-term variations would capture the effects of any 

longer-term components, however longer-term temperature changes may have a different 

mechanism of influence. It may therefore be of value to extract longer-term signals from the 

environmental signal (by digital filtering, for example) as a separate covariate. 

The recent increases may be related to naturalised forms of E. coli that respond to environmental 

conditions such as temperature in unusual ways (see Section 3.2 for discussion). If environmental 

conditions are becoming more conducive to survival of such naturalised populations, then measured 

concentrations of E. coli could increase. For example, increased temperature could favour the growth 

of environmental strains. This is a somewhat tentative explanation for the recent trends, and it is not 

clear why the naturalised populations would have increased recently. However, the influence of 

naturalised population is potentially important. We therefore recommend further literature review 

on this topic, especially the role of environmental drivers such as temperature on the survival of 

naturalised populations.  Depending on the findings, the literature review could be followed with (a) 

field measurements to detect naturalised populations and environmental clades at key sites, and (b) 

follow-up experiments on factors affecting the survival and growth of naturalised populations.  

An environmental driver that was not included in the analysis was solar radiation, which is known to 

kill in-stream E. coli when high. It would be possible to include this covariate (e.g., obtained from the 

VCSN) in the GAM model approach in future work.  
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There may be additional drivers of E. coli increases that we have not yet considered, such as changes 

in bird or pest animal populations. These drivers would be difficult to quantify. Repeated source-

tracking might assist to some degree, but source tracking studies have not been widely conducted to 

date. In addition, current methods provide indicators of source types rather than highly accurate 

estimates of abundance. Considering the limitations of the tracking methods, we recommend that 

this work have a lower priority. 

We also consider that it would be appropriate to compare recent trends in the Waikato to trends in 

neighbouring regions. It would be valuable to know if other regions of NZ, and temperate regions 

overseas, are also experiencing similar recent increases in E. coli concentrations in streams that are 

not explainable by land management changes, but might, plausibly, reflect common factors such as 

global warming. This could also help identify possible influences of changes in sampling and analysis 

methodologies, and also shed light on drivers (for example, if trends are not the same in other 

regions, then there is a suggestion that the causes of trends are Waikato-specific, which will help 

narrow the search for causes). 
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12 Conclusion 
This study used traditional non-parametric (Sen slope) and alternative GAM trend estimation 

methods to quantify and explain trends in E. coli concentrations in Waikato streams in terms of a 

range of drivers. 

In relation to the statistical methods for trend detection and corrections for natural drivers such as 

temperature, rain and flow: 

▪ Sen slope estimates adjusted for season and flow were similar to unadjusted slope 

estimates.  

▪ Sen slope estimates based on 5-year data periods were often much larger than slope 

estimates inferred from GAM models fitted to the entire 20-year series. In many cases 

non-zero Sen slopes were predicted where the GAM estimate was not different from 

zero. 

▪ Trend estimates based on GAM models were consistent in terms of magnitude and 

likelihood, regardless of which covariates were included. Including covariates helped 

explain the month-to-month variation in E. coli measurements but did not change the 

long-term trend estimates. 

▪ GAM models that included rain and/or flow were much better at explaining month-to-

month E. coli concentrations than those that excluded these variables. Rain may be 

preferable to flow for trend estimation purposes, because estimates are available 

throughout New Zealand from the NIWA VCSN network, whereas measured flow is 

currently only available at limited sites (virtual flow estimates will become available in 

the future via the NIWA New Zealand Water Model (NZWaM) project).  

Our trend assessment confirms widespread decrease in E. coli concentrations (improvement in 

microbial water quality) in the 2010-2014 period, followed by widespread, strongly increasing E. coli 

concentrations (deterioration in microbial water quality) in the 2015-2019 period (Figure 36).  

Measured E. coli concentrations were shown to be influenced by environmental drivers of flow, 

temperature, and rain; this observation is consistent with how these factors mobilise and transport 

particulates, such as E. coli. The GAM models made corrections for effects from these factors by 

including them as covariates in the statistical model, but even after these corrections for effects were 

made, an increasing trend in concentrations in the 2015-2019 period persisted. 

Analysis of the data and knowledge of contaminant mobilisation and transport processes confirms 

that land use and stock numbers affect microbial concentrations in streams. However, changes in 

stocking rates and land use in the 2015-2019 period have been small and are unlikely to explain the 

recent increasing concentration trend. 

Recent increases in E. coli are unlikely to be related to increases in fencing, because fencing has been 

increasing over time whereas concentrations have been increasing recently.  

Recent increases in E. coli are also unlikely to be related to changes in point sources, because 

discharges from wastewater treatment plants have generally decreased over time, and they typically 

make a small contribution to stream microbial contamination at the monitoring sites. Similarly, the 
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number of dairy shed effluent discharges to streams have steadily decreased over time, and their 

impact of stream microbial water quality is expected to be decreasing rather than increasing. 

E. coli concentrations are generally correlated with optical water quality variables such as turbidity 

and clarity. However, recent trends in turbidity and clarity differed from those of E. coli, suggesting 

that recent increases in E. coli concentration over time are due to factors that are not influencing 

either turbidity or visual clarity. 

The recent trend did not seem to be associated with any particular land use, or with stocking density. 

Recent increases occurred even in catchments dominated by native and exotic land use.  

We did not detect systematic sub-regional variations in the recent trends.    

Overall, the causes of recent increases remain unknown. The observed trends could be due to 

processes and drivers that were not included in the current study, limitations of the statistical 

models, or artefacts of sample handling, storage and analysis methods. The cause would seem to 

operate across the region.  

Several factors have been identified for further investigation (with a view to explaining the cause of 

the trend of increasing E. coli concentrations), including: 

▪ Undertaking a similar exercise using data from other regions to see whether this is a 

Waikato-specific or national phenomenon. 

▪ Refining the statistical models to address long-term, gradual variations in temperature 

as a specific covariate. 

▪ Adding solar radiation to the models. 

▪ Reviewing the literature to identify whether naturalised populations or other strains of 

microbe that are not of faecal origin but are counted in the E. coli analysis could have 

an effect on recently observed trends. 

▪ Reviewing the literature to identify whether temperature changes (related to climate 

change) may have an effect on growth of organisms in faecal matter in pastures and in 

riparian areas, as well as in naturalised populations. 

▪ Undertaking a brief review of sample collection, storage and analysis to identify factors 

that might have changed recently and could have resulted in apparent trends in 

microbial concentrations. While the sampling and storage is undertaken by 

experienced teams, and sample analysis is conducted by a high-quality accredited 

laboratory with standard methods, it would be prudent to eliminate changes in sample 

collection, storage or analysis as factors contributing to unexpected trends. 
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13 Supplementary material  
The full set of trend analysis plots for the 82 sites and 6 GAM methods (e.g., Figure 23—Figure 32) for 

E. coli, turbidity and visual clarity have been provided to Waikato Regional Council, include the 

associated Sen slope trend estimates. For each trend analysis a GAM diagnostic and residual plot is 

also available. 
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15 Glossary of abbreviations and terms 

AIC Akaike Information Criterion, an estimator of prediction error and thereby 

relative quality of statistical models for a given set of data. 

CFU Colony-forming units, a unit used in microbiology to estimate the number of 

viable bacteria or fungal cells in a sample. 

covariate In the context of this study, a covariate is a variable in a regression relationship. 

CLUES Catchment Land Use for Environmental Sustainability, a GIS-based model that 

predicts the effects of land-use change and farm practice scenarios on water 

quality and a range of socio-economic indicators at the catchment scale.  

EDF Effective degrees of freedom, a measure of curvature of a GAM model term. 

FIB Faecal Indicator Bacteria, types of bacteria used to detect and estimate the 

level of faecal contamination of water. 

GAM Generalised additive model, a type of linear regression model constructed by 

adding together flexible curved terms. 

GAMM Generalised additive mixed model, a type of mixed linear regression model 

constructed by adding flexible curved terms and fixed effects. 

LAWA Land Air Water Aotearoa, a collaborative web portal for sharing New Zealand 

environmental data and information. 

LCDB New Zealand Land Cover Database, a multi-temporal, thematic classification of 

New Zealand's land cover. 

LOD Limit of detection, the lowest concentration of the analyte that can be reliably 

detected. 

LOESS Locally estimated scatterpoint smoothing, a method of regression analysis 

which creates a smooth line through a scatterplot. 

mgcv Mixed GAM computation vehicle, an R package for generalized additive 

modelling (GAM). 

MFE Ministry for the Environment. 

MOH Ministry of Health. 

MPN Most probable number, a statistical method used to estimate the viable 

numbers of bacteria in a sample. 

NIWA  National Institute of Water and Atmospheric Research. 

NPS-FM 2020 National Policy Statement for Freshwater Management 2020, the freshwater 

management policy statement of the New Zealand Government. 

NRWQN National River Water Quality Network, NIWA’s network of 77 water quality 

monitoring sites on 35 rivers that are evenly distributed over the two main 

islands of New Zealand. 
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NSE Nash-Sutcliffe Model Efficiency, a statistic that measures the proportion of data 

variance explained by a model. 

NZREC New Zealand River Environment Classification, a hierarchical classification, 

mapping and environmental database of New Zealand rivers. 

NZWaM New Zealand Water Model, a national hydrological model.  

PET Potential evapotranspiration, the water vapor flux under ideal conditions of 

complete ground cover by plants, uniform plant height and leaf coverage, and 

an adequate water supply. 

RL Reporting limit, the lowest concentration at which an analyte can be detected 

in a sample. 

SOE State of the Environment, data regularly collected on different aspects of New 

Zealand’s environment. 

SOI Southern Oscillation Index, the difference in average air pressure measured at 

Tahiti and Darwin, Australia. 

SU Stock units, a method of comparing the numbers and density of livestock 

grazing in agriculture. In New Zealand, 1 SU is equivalent to 1 breeding ewe. 

VCSN Virtual Climate Station Network, a grid of over 11,000 virtual weather data 

points covering the entire New Zealand area. 

WQ Water quality, the condition of the water, including chemical, physical, and 

biological characteristics, usually with respect to its suitability for a particular 

purpose such as drinking or swimming. 

WRC Waikato Regional Council. 
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Appendix A Handling of censored values 
Censored data refer to measurements whose values are only partially known. For environmental 

data, this most often occurs with very low values (e.g., concentrations) that are below the limits of 

reliable detection of the equipment or procedure being used. Such values are called “left-censored” 

and reported with a “<” sign (e.g., < 1). Censoring may also occur with very high values (e.g., 

concentrations) that are above the operating limits of the equipment or procedure, in which case 

they are called “right-censored”, and reported with a “>” sign (e.g., > 1000). Censored data require 

special handling when used in statistical calculations. Fraser et al. (in prep.) discuss handling of 

censored values in data at length, but do not recommend a particular approach. The common 

approach of replacing left-censored values with 0.5 of the censoring level works well in many 

instances but is not appropriate when measurement does not have a natural lower bound at zero 

(e.g., for temperatures), or when the censoring level changes through time (as in the case of Waikato 

E. coli data as illustrated in Figure 6). 

Another option, “ imputation”, replaces the censored values with an estimate of their original value. 

In this case the average of all data values below the censorship level (including already imputed 

values) is used. Censored values with no data values below them are replaced with the censoring 

level itself. For least-squares-based fitting this prevents introducing an artefactual trend. Therefore,  

imputation should be applied after data transformation. This method can also be applied to right-

censored data. 

We compared several methods for handling censored values and compared them in Figure 51. A 

synthetic data set was created (ostensibly with no trend) and censoring was then applied to points < 

1 prior 2010 and < 3 thereafter. The effect of the following approaches to using the censored points 

in trend analysis was then tested—the objective was to recreate the original trend: 

1. Original – original data with no censorship and the original (near zero) trend. 

2. Censored – use the censorship level as reported, resulting in an artefactual increasing 

trend.  

3. Exclude – delete the censored data, resulting in an even more pronounced artefactual 

increasing trend. 

4. Half – replace the censored data with half the censorship level (this is a common 

approach), resulting in a (slightly) negative trend relative to the original. 

5. Impute - replace the censored data with the average of all data values below the 

censorship level (including already imputed values), resulting in a trend that is very 

close to the original. 

Figure 51 shows that the “half” and “impute” methods recreate the original trend well in this case. 

Based on this preliminary analysis of censorship approaches, we used the “ impute” method to 

reposition left- and right-censored values in the E. coli data. This method was applied after Box-Cox 

transformation. 
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Figure 51: Comparison of methods for handling censored data in trend analysis.  The “uncensored” points 
were included in all methods; methods differed only in their handling (or exclusion) of the “original” points. 
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