

PATTLE DELAMORE PARTNERS LTD

Moanataiari Subdivision Site Investigation Report

Waikato Regional Council

solutions for your environment

Moanataiari Subdivision Site Investigation Report

: December 2011

MOANATAIARI SUBDIVISION SITE INVESTIGATION REPORT

Quality Control Sheet

TITLE Moanataiari Subdivision Site Investigation Report

CLIENT Waikato Regional Council

VERSION Final

DATE December 2011

JOB REFERENCE A02469100

SOURCE FILE(S)

Prepared by

SIGNATURE

Chris Foote

Andrew Rumsby

Directed, reviewed and approved by

SIGNATURE

Keith Delamore

Limitations:

This report has been prepared by Pattle Delamore Partners Limited on the specific instructions of Waikato Regional Council for the limited purposes described in the report. Pattle Delamore Partners Limited accepts no liability to any other person for their use of or reliance on this report, and any such use or reliance will be solely at their own risk.

Executive Summary

Waikato Regional Council (WRC) engaged Pattle Delamore Partners Limited (PDP) to undertake a limited soil cap depth and sampling investigation of the Moanataiari subdivision in Thames. WRC requested that this site be investigated because a preliminary desktop study undertaken in June 2010 has identified that the subdivision is located on land reclaimed from the Firth of Thames using mine waste, municipal landfill and unidentified wastes. Therefore, WRC has commissioned this site investigation to delineate and characterise the chemicals in the ground so as to assess the risks to the community and therefore determine the need for any future investigations required for the site.

Between the 26 to 28 October 2011 hand augering was undertaken at 28 locations across the site. The sampling was undertaken based on a distorted 100 m grid sampling pattern, with the grid being distorted to ensure all sampling locations were located on public areas (such as road verges). Every borehole was carefully logged by a qualified geologist and soil samples were collected from the surface (0-10 cm), 0.5 m, 1.0 m and, where possible, 1.5m depth below ground level.

All samples collected from the surface (0-10 cm) and at 0.5 m were submitted to Hills Laboratory for chemical analysis (except MOA026 where only the surface sample was submitted). In addition to these samples the 1 m deep samples, which were believed to be collected within the fill material, were submitted from 15 of the 28 sampling sites. At one position (MOA022) the 1.5 m sample was also analysed.

The soil samples were analyzed to determine total recoverable (US EPA method 200.2) antimony (Sb), arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni), and zinc (Zn). At 20 hand auger locations the soil samples were also analysed for Total Petroleum hydrocarbons (TPH). Samples from these 20 hand auger locations were selected for TPH analysis on the basis that either historical information indicated that landfill waste may be present at these locations or hand augering confirmed the presence of organic wastes at these sampling locations.

The laboratory testing found that the concentration of arsenic exceeded the National Environmental Soil Contaminant Standard (SCS) for arsenic of 20 mg/kg for residential soils at all of the surface sampling sites. (Residential use is not applicable to the road reserve where the samples were collected but the comparison allows for the possibility that the sample results are indicative of the soils in the residential properties).

The highest concentrations of arsenic were found east of Kuranui Street. The two highest surface soil samples collected in this area contain arsenic concentrations at 320 and 350 mg/kg, which are 16 and 17.5 times higher than the national standard for arsenic in residential soils. Arsenic concentrations in soil samples collected from sampling sites located west of Kuranui Street were much lower than those obtained from the east of Kuranui Street. The analytical results obtained from the laboratory also indicate that the

concentration of arsenic is generally higher in samples collected from greater than 0.5 m depth than those obtained from the surface (0-10 cm).

In addition to elevated concentration of arsenic found in the soils, elevated concentrations of antimony and lead, which exceed the default soil guideline value (antimony) or soil contaminant standard (lead) for protecting human health on residential properties, were present in some surface samples. Testing of the samples for total petroleum hydrocarbons (TPH) found that the concentrations of TPH in the samples were below the analytical detection limit in most samples. However, at sampling location MOA021 hydrocarbon residues were detected and therefore the soil samples from this location were also analysed for polycyclic aromatic hydrocarbons (PAHs). The PAH testing found that the benzo(a) pyrene equivalent (BAP eq) was lower than the National Environment Standards (NES) soil contaminant standard (SCS) for human health in all of the samples.

After receiving the initial laboratory report, the 10 samples with high concentrations of arsenic were re-analysed using an extended element suite of 32 elements to determine if there were any other elements which were elevated enough to potentially exceed human health protection guidelines or standards. This analysis revealed that thallium concentrations in all of the soils tested was higher than the US EPA guideline value for human health protection (0.8 mg/kg) (There is no New Zealand guideline or soil contaminant standard (SCS) for thallium in residential soils). The laboratory was then asked to identify which samples potentially contained concentration of thallium above 1 mg/kg and these samples were analysed for thallium. In cases where thallium exceeded 1 mg/kg thallium (28% of samples), concentrations of up to three times the USEPA guideline were detected. Relative to guideline values, thallium, antimony and lead remain secondary contaminants compared with arsenic, and dealing with arsenic issues would also deal with those of the other three elements.

Soil gas measurements were undertaken at 8 sampling locations where historical information suggested that municipal waste may be present. However no evidence of landfill gas was found in any of these monitoring locations.

On the 15 November 2011 an XRF survey was undertaken at 70 locations alongside the road verges within the Moanataiari subdivision. The XRF survey confirmed the findings of the laboratory testing undertaken on the surface soil samples. The XRF measurements found elevated concentrations of lead at several locations between Ensor, Kuranui Street and Tararu Road. Readings of up to 1100 parts per million (ppm) were detected in a surface soil sample measured at one location, but in general XRF results for lead were in keeping with results of laboratory testing.

All the soil samples were collected from the road verge away from underground services and no soil samples or XRF readings have been undertaken on residential properties. It is possible that the roadside verges may contain more arsenic on average than the adjacent residential properties. This is because the verges may have been subjected to more mixing of material excavated from beneath the ground surface than some of the

residential properties, when the roadways were established. Therefore it is not possible to infer soil concentrations on residential properties using the data obtained by laboratory analysis of soil samples or XRF measurements from the adjacent soil sampling locations.

On the basis that widespread exceedances of the SCS for residential soils were detected across that Moanataiari subdivision, PDP recommends that:

- Soil testing of all residential sites within the subdivision should be undertaken.
- For laboratory testing of the soil samples and XRF measurements the analytical suite should include antimony, arsenic, cadmium, lead and thallium.
- Residents and workers (including maintenance workers and contractors) at the subdivision should receive advice on how to minimise health risks that may be associated with coming into contact with chemically impacted soils within the Moanataiari subdivision.
- Further testing of petroleum hydrocarbons and landfill gas is not required at the site.

Note on Terms

Heavy metals / trace elements

The focus of this report is on concentrations and sources of ten chemical elements (some of which are major elements, and some are trace): antimony (Sb), arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), lead (Pb), thallium (Th) and zinc (Zn). Sometimes arsenic, cadmium, chromium, copper, mercury, lead and zinc are referred to as 'heavy metals.' However, this term is falling out of favour because it is an ambiguous one. A range of different definitions for 'heavy metal' exist in the scientific literature and the group of elements covered by that term changes depending on the definition used. In addition, arsenic is not regarded as a true metal, but a metalloid. The term 'elements' is used in this report because it is not ambiguous, and accurately describes the group of elements that are the focus of this work.

The term 'trace element' refers to a chemical element that is not one of the ten major elements that occur in the earth's crust. Ninety-nine percent of the earth's crust is composed of these ten major elements: silicon, oxygen, aluminium, iron, calcium, potassium, sodium, magnesium, titanium and phosphorus. All other elements are 'trace elements', and most are present at natural concentrations of well under 100 mg/kg (parts per million) in the earth's crust.

Glossary of Terms				
Acid Digestion	A laboratory sample preparation technique to prepare samples for analysis using a strong acid to release the chemical elements from the soil.			
Antimony (Sb)	A naturally occurring chemical element concentrated in some gold bearing mineral deposits and typically found as a trace impurity in pyrite and occasionally in the sulfide mineral stibnite $(\mathrm{Sb}_2\mathrm{S}_3)$.			
Arsenic (As)	A naturally occurring chemical element concentrated in some mineralised rocks in the Coromandel area and typically found with pyrite and occasionally in the sulphide minerals orpiment (As_2S_3) , realgar (As_4S_4) , arsenopyrite $(FeAsS_2)$ and Enargite (Cu_3AsS_4) .			
Benzo(a) pyrene equivalent (BAP eq.).	Benzo(a) pyrene equivalent is a technique used to calculate the overall carcinogenic (cancer causing) potential of a group of PAHs compounds. This is done by assessing the overall cancer potency relative of the group of PAHs by multiplying the concentration of the cancer causing PAHs by their relative potency as compared benzo(a) pyrene (one type of polycyclic aromatic hydrocarbon).			
Cadmium (Cd)	A naturally occurring chemical metal element found in low levels in soils and rocks and also present in superphosphate fertilisers.			
Chromium(Cr)	A naturally occurring chemical metallic element found in low levels in soils and rocks.			
Copper (Cu)	A naturally occurring chemical metallic element found in low levels in soils and rocks which is enriched in some mineralised rocks present in the Coromandel area.			
Elevated	Concentrations are considered elevated if they are above background concentrations.			
Hand Auger	A hand-held, manually turned drilling device with a rotating blade for boring into the earth and removing the drilled out material.			
Landfill Gas	A complex mix of different gases created by the action of microorganisms within a landfill. Landfill gas is comprised of methane and carbon dioxide.			

Lead (Pb)	A naturally occurring chemical metallic element found in low levels in soils and rocks which is enriched in some mineralised rocks present in the Coromandel area.	
Mercury (Hg)	A naturally occurring chemical metallic element found in low levels in soils and rocks which are enriched in some mineralised rocks present in the Coromandel area.	
Metals	The main metallic elements consider in this report include aluminium, cadmium, chromium, copper, lead, mercury, nickel, thallium and zinc.	
Metalloids	A group of elements which have properties similar to metals and non-metals elements. The group of elements which are generally consider being metalloids are boron, silicon, germanium, arsenic, antimony and tellurium.	
Mullock	Waste rock from which valuable material has been extracted. Mullock can be generated in the search for minerals or during the mining process.	
NES Soil Contaminant Standard (SCS)	Numerical value for a soil contaminant that has regulatory status under the National Environmental Standard (NES)	
Nickel (Ni)	A naturally occurring chemical metallic element found in low levels in soils and rocks.	
Petroleum Hydrocarbons	Naturally occurring, organic compounds that are found in fossil fuels such as petrol or coal.	
Polycyclic aromatic hydrocarbons (PAHs)	PAHs are chemical compounds which are found in the environment that are formed mainly by the incomplete combustion of organic materials, such as wood or fossil fuels. PAH molecules are made up of 3 or more benzene (aromatic) rings which are joined together.	
Semi-quantitative	Yielding an approximation of the concentration or amount of a substance; falling short of a quantitative result.	
SGV	Soil Guideline Value. Soil contaminant concentrations derived on a site-specific basis or derived in accordance with appropriate hierarchy.	
Tailings	The materials left over after the process of separating the valuable fraction from the uneconomic fraction of an ore.	
Thallium (Th)	A naturally occurring chemical element concentrated in some mineralised rocks in the Coromandel area and may be found as a trace impurity in pyrite containing rocks.	

MOANATAIARI SUBDIVISION SITE INVESTIGATION REPORT

Trace Element	A naturally occurring element that is not one of ten major elements that occur in the Earth's crust.	
Zinc (Zn)	A naturally occurring metallic chemical element found in low levels in soils and rocks which is enriched in some mineralised rocks present in the Coromandel area.	

Table of Contents

SECTION		PAGE		
Executive Summary				
Note on	v			
1.0	Introduction	1		
1.1	Background to the Investigation	1		
1.2	Scope of Works	2		
2.0	Site Description and History	2		
2.1	Site Description	2		
2.2	Site History	3		
3.0	Site Investigation Methodology	6		
3.1	Soil and Landfill Gas Sampling	6		
3.2	Laboratory Analysis	8		
4.0	Results	18		
4.1	General Geological Observations	18		
4.2	Laboratory Results	19		
4.3	XRF Testing Results	20		
4.4	Landfill Gas Monitoring	21		
5.0	Risk Assessment	21		
5.1	Guidelines	10		
5.2	Results Assessment and Discussion	21		
6.0	Conclusions and Recommendations	24		
7.0	References	24		

Table of Figures

Figure 1 Moanataiari Subdivision – Fill Areas 5

Table of Tables

Table 1: Summary of selected LFG trigger values (v/v): 15

Х

MOANATAIARI SUBDIVISION SITE INVESTIGATION REPORT

Appendices

Appendix A: Figures

Appendix B: Soil Logs

Appendix C: Tables

Appendix D: Lab Reports and C.O.C.

Appendix E: Acute Arsenic Report

1.0 Introduction

Waikato Regional Council (WRC) has engaged Pattle Delamore Partners Limited (PDP) to undertake an assessment of the soil capping depth and to undertake soil chemistry tests of the Moanataiari subdivision in Thames (Figure 1). The subdivision is located on land reclaimed from the Firth of Thames using mine waste, municipal landfill and unidentified wastes.

A Phase 1 historical desktop review of the site (CSI, 2010) revealed that the Moanataiari community of residential housing is situated on wastes that potentially contain a range of chemicals. Therefore WRC engaged PDP to conduct a limited site investigation to further delineate and characterise the chemicals in the ground so as to assess the risks to the community and therefore determine the need for any future site investigations. In addition, the investigation is to provide limited information on the nature and presence of the capping and fill material at the site.

1.1 Background to the Investigation

In 2005, WRC engaged an environmental consultant to undertake sediment sampling of the lower Firth of Thames to determine trace element concentrations at a range of sites. The sediment sampling identified a localised hotspot of arsenic (average concentration of 36.9 mg/kg) and mercury (average concentration of 0.7 mg/kg) near the Moanataiari subdivision (N. Kim, 2007). At this time it was brought to the attention of WRC staff that a Ministry for the Environment (MfE, 2001) publication stated that the Moanataiari subdivision had been reclaimed from the sea using mullock and mine tailings. This suggested an explanation for elevated mercury and arsenic in sediments outside the Moanataiari sea-wall: that this was due to presence of mine tailings material in the area.

As part of a separate study for urban soils (11 towns throughout the Waikato Region) surface soil samples were collected from the Moanataiari School on the 19th January 2007. The sampling involved the collection of 16 sub-samples from the upper 10 cm of the soils of the Moanataiari School recreational field to form a single composite sample. These sub-samples were composited together and one sample was analysed by Hill Laboratories which showed that the concentration of these elements were within the typical background concentration range for soils found in the Waikato region (N. Kim, WRC, pers. coms.). It was later discovered from council records that around the time of subdivision development the school was built up an additional meter using imported fill materials, therefore these soil sampling results may not be representative of the rest of the subdivision

In 2010, WRC commissioned a Phase 1 desktop scoping report to investigate the composition of the fill material used to construct the Moanataiari subdivision and to identify potential risks to human health and the environment. The report identified a high potential risk to residents east of Tararu Road and a medium potential risk to residents west of Tararu Road (CSI, 2010). This risk assessment was based only on qualitative data (interviews with various people and review of District and Regional Council records);

no quantitative information (i.e. concentration of elements within the soils) was used to undertake this assessment. WRC forwarded the report to the Ministry for the Environment (MfE) in 2011 as required by the contaminated site remediation fund (CSRF) priority list review exercise. A subsequent independent review of the report identified a number of uncertainties relating to the site such as depth and distribution of capping material, as a result the site was provisionally placed on the Ministry's draft priority list (Bruce Croucher, MfE, pers. coms.).

In order to further assess uncertainties relating to the site WRC commissioned this study, particularly to address potential human health risks associated with contaminated soils in the Moanataiari subdivision. Following the receipt of interim results for this investigation indicating elevated arsenic levels WRC also commissioned PDP to develop preliminary screening criteria for acute arsenic toxicity in soils.

1.2 Scope of Works

The scope of works, as set out in WRC's e-mail dated 21 September 2011, is:

- Carry out shallow hand augered boreholes, to a target depth of 1-1.5m below ground level (bgl), at approximately 23 locations (chosen by WRC on a distorted 100 m grid spacing). The depth of the boreholes would be dependent on the subsurface conditions encountered (i.e. if waste material is encountered);
- Ensure that all borehole locations are placed on public land (e.g. road side verges);
- Select approximately 1-2 soil samples from each borehole location to be analysed by an IANZ accredited laboratory. (The number of samples selected for analysis per borehole would be dependent on the total depth achieved);
- : Undertake measurement of surface soil samples using a portable X-ray florescence spectrometer (XRF) to improve investigation coverage across the site;
- Uptake landfill gas measurements at up to 10 selected locations;
- Undertake macro-digestion and laboratory testing of selected samples containing waste material for heavy metals; and
- : Report on the findings, including comparison of results against residential and other applicable land use guidelines.

2.0 Site Description and History

2.1 Site Description

The Moanataiari subdivision is located on the foreshore at the northern end of Thames, adjacent to State Highway 25 (Figure 1). The subdivision is bounded to the North and West by the Firth of Thames, to the south by Burke Street and to the east by Queen Street (State Highway 25). The subdivision is generally flat. The western end of the site

is slightly below high tide level. The seawall adjacent to Fergusson Drive is raised above the surrounding land to prevent storm surges inundating the subdivision.

There are approximately 200 households within the subdivision and the average section size is approximately 0.07 ha (700 m²). Based on Census data from the 1996, 2001 and 2006 there are approximately 435 to 460 residents living in the sub-division and there appears to be about 27 children under 6 years old living in the subdivision.

Moanataiari primary school is located between Moanataiari Street to the east, Kuranui Road to the West, Burke Street to the South and Ensor Street to the north (see Figure 1). The school has a roll of 101. Most of the site around the school buildings is grass-covered. A small vegetable garden is located on the western site of the school. The topography of the school is predominately flat however the perimeter on the southern end of the school (where the recreational field is located) is elevated approximately 1 m above the adjacent footpath.

A Montessori play centre is located on the western side of Moanataiari School between the recreational field of the primary school and Moanataiari Road. The school operates out of an existing class room block and has its' own fenced off area. The site is predominately covered in grass with a large bark covered playground located in the southeastern portion of the school area and a shallow (approximately 10 cm deep) sandpit located between the bark playground and the classroom.

The Thames Early Childhood Education Centre is located adjacent to the A & G Price foundry on the corner of Tarau Road and Haven Street. Approximately 63 children under 5 are enrolled here. Visual observations by PDP staff indicate the playing areas within the Child Education Centre are all covered with artificial surfaces and there is a sand pit located on the site. PDP staff saw no vegetable gardens, fruit trees or grassed play areas on the site.

2.2 Site History

Based on the information summarised in the scoping report prepared by Contaminated Site Investigation (CSI) (CSI, 2010), the reclamation of the foreshore at Moanataiari is believed to have begun soon after gold was discovered in the foothills at the mouths of the Kuranui, Moanataiari and Waiotahi streams in the 1860s. Mullock (waste rock) and mine tailings were discharged into the coastal area from seven stamper batteries located on the foreshore. As a mercury amalgam process was used to extract the gold from the crushed ore it is possible that the tailings may be enriched with mercury. Mine wastes were pushed into the Firth of Thames behind the seawalls which were created by the Thames Harbour Board for the Thames Goods Wharf. Records from the Thames Coromandel District Council (TCDC) state that prior to 1920 infilling of the Moanataiari reclamation comprised of mine mullock or tailings. The Thames Borough Council inherited the reclamation from the Thames Harbour Board in 1936 and commenced developing the sub-division around 1948. The council also used the reclamation as a local tip for at least five years, with deposal of municipal waste occurring west of Moanataiari Street and south of Ensor Street.

TCDC council records show that a clay cap has been placed over the majority of the subdivision, however it is not certain if the properties east of Tararu have been capped as this area predates the Thames Borough Council subdivision works. Most of the clay used for the cap was sourced from the quarry located east of the Moanataiari reclamation. It is possible that this material may contain elevated concentration of metals due to mining activity occurring in the area where the capping material was sourced.

The extent of the clay cap between Tararu Road and Kuranui Street is not known as aerial photographs in 1940s indicate that the pre-existing fill of mullock and tailings was extensive.

The CSI 2010 report states that clay comprised the majority of the fill from Kuranui Road west but as municipal waste was also deposited in this area the depth and lateral extent of the clay cap in this area is unknown.

Oblique aerial photography and interviews indicate that the surface of the reclamation was very hummocky prior to any capping occurring and this could mean that the capping depth could be highly variable between locations.

The subdivision is believed to have been developed in three main stages, with houses being established:

- Pre 1914 East of Tararu Road,
- : Between 1950 to late 1960s Tararu Road to Kuranui Street,
- 1970s Kuranui Street to Fergusson Drive

Figure A summarises the extent of knowledge regarding the type of fill used in the Moanataiari subdivision as determined in the CSI 2010 report.

PATTLE DELAMORE PARTNERS LTD

MOANATAIARI SUBDIVISION SITE INVESTIGATION REPORT

Figure A Moanataiari Subdivision – Potential Fill Areas

3.0 Site Investigation Methodology

3.1 Soil and Landfill Gas Sampling

3.1.1 Hand Auger Investigations

On 26, 27 and 28 October 2011, a series of hand augered boreholes was completed on a grid pattern throughout the road reserves across the suburb of Moanataiari by PDP staff. The boreholes were undertaken to a target depth of 1.5 m bgl to investigate fill depth and to provide soil samples for testing. The grid spacing was based on the WRC distorted grid, with sampling locations set out at approximately 100 m intervals across the suburb.

A total of 28 hand auger boreholes (MOA001-MOA028), were located on the approximate nodes of the grid, to obtain thorough coverage across the Moanataiari area. Four of the boreholes (MOA009, MOA012, MOA027-028) were undertaken within the boundary of Moanataiari School, with all other bores located in public areas (i.e. road side verges). Two of the boreholes were targeted to specific areas within the school, the first (MOA027) in the Moanataiari School Garden, and the second (MOA028) in the area indicated to PDP by the Moanataiari School Principal where it is proposed to extend the school garden on to an adjacent grassed area. MOA009 and MOA012 boreholes locations where moved onto the boundary of the school from there initial sampling based on the 100 m grid to avoid underground services.

Prior to the commencement of any site work a review of all utility services in the vicinity of the location of proposed boreholes was carried out.

Each proposed borehole location was then checked for buried services by Underground Service Locators. In any instance that the borehole location was deemed to be too close to an existing underground service, the borehole was moved to a more safe location free from buried services. For proposed borehole locations MOA001-003 and MOA005 a low voltage power cable was inferred to be too close to the proposed borehole locations. Due to the presence of the existing seawall running parallel to Fergusson Drive in the west of the subdivision it was deemed that no other suitable sampling locations were feasible. A stand over and service location was provided by a technician from TENIX (local electricity line contractor) for the proposed borehole locations MOA001-003 and MOA005 to ensure the safety of the PDP field staff.

3.1.1.1 Capping Depth

To accurately assess the depth of fill and/or natural ground at the location of each borehole, every borehole was carefully logged by a qualified engineering geologist in accordance with the New Zealand Geotechnical Society 'Guideline for the Field Classification and Description of Soil and Rock for Engineering Purposes' dated December 2005.

3.1.1.2 Soil Sampling

At each borehole location a surface soil sample was initially collected from the top 10 cm of soil material, after first removing the grass. The surface samples represent soil that a person could be exposed to during normal activities around the site. Deeper soil samples were also collected where possible, at each borehole location at approximately 0.5 m, 1.0 m and 1.5 m depth below ground level.

The boreholes completed on both the grid and at targeted locations were advanced using a hand auger with a 50 mm diameter dutch head. The hand auger was cleaned between each location by scrubbing the head and extension rods with a mixture of decontamination detergent (Decon90) and fresh water. The equipment was then rinsed with fresh water, in order to minimise the chance of cross contamination occurring between investigation locations in accordance with the MfE's Contaminated Land Management Guidelines - No. 5; Site Investigation and Analysis of Soils 2004 (MfE, 2004). On completion of each borehole location, the disturbed soils that were not collected for sampling were placed back into the borehole.

A new pair of disposable nitrile gloves was worn for each sample collection to prevent cross contamination between samples. Soil samples were placed into individual glass and plastic jars supplied by the analysing laboratory (Hill Laboratories Ltd in Hamilton) and immediately placed into chilled storage.

Prior to shipment to the laboratory, the soil samples remained in chilled storage before being packed in a chilly bin with ice packs and delivered by PDP under standard chain-of-custody procedures to the laboratory for analysis. The chain-of-custody documentation for the soil samples is appended to this report.

3.1.2 Landfill Gas Sampling

In areas where municipal solid waste was suspected to be present, PDP undertook a gas spiking measurement. An AMS Soil gas probe was driven into the ground to just above the groundwater level or 1 m (which ever was the shallowest) and then the AMS probe was connected to a GA2000+ landfill gas meter (serial number GA13464). The GA2000+ is capable of continuously and simultaneously recording the concentrations of methane, carbon dioxide, carbon monoxide, hydrogen, hydrogen sulphide and oxygen. Peak soil gas measurements were recorded by the field staff.

3.1.3 XRF Investigation

A Nitron XL3t portable X-ray fluorescence (XRF) instrument (serial number 30189) was used to semi-quantitatively determine the in-situ concentration of trace and major elements in the soil. All XRF measurements were undertaken by a PDP staff member who is a licensed XRF operator, who has been trained in the safe use of portable X-ray equipment.

XRF measurements were taken at sites located between the soil sampling locations to better delineate of element distributions in the investigation area. The portable XRF instrument was placed directly in contact with the ground to ensure that the X-ray window was fully in contact with the soil. XRF readings were taken for at least 90 seconds. The X-ray window was cleaned between sampling locations in accordance with the manufacturer's instructions.

The XRF measurements were not undertaken in accordance with US EPA protocol 6200 as the purpose of this exercise was to further delineate areas of high trace element concentrations from areas of low trace element concentrations. In particular, the soil samples were not screened through a minus 2 mm sieve and dried before XRF measurements. The consequence of this testing approach is that the in-situ soils have higher moisture content than the samples that the laboratory analysed and may have included material (i.e. gravels). The higher moisture content of the in-situ soils and the presence of gravels in the sample might result in the XRF reading slightly lower concentrations than the laboratory result.

The soil sampling locations where XRF readings were collected were recorded using a high resolution GPS (x-y positional RMS, error less than 0.5 m). This method was used so that the precise location can be revisited should further sampling be required (for example, because a hotspot was detected).

XRF readings were taken of 20 soil samples that were sent to the lab for analysis, which allowed PDP to determine the bias and relative precision of the XRF measurements against the laboratory results.

Also, the multi-element capability of the portable XRF meter was used to screen the samples to determine if any further elements should be included in the laboratory analytical suite.

3.2 Laboratory Analysis

All soil samples collected from the surface (0-10 cm) and at a depth of 0.5 m were scheduled for laboratory analysis (except MOAO26 where only the surface sample was submitted). In addition to these samples the 1 m deep samples believed to be collected within the fill material, from 15 of the 28 sampling locations, were also analysed by the laboratory. At one location (MOAO22) the 1.5 m sample was also analysed because PDP staff felt that the material was indicative of mine wastes.

At one sampling location (MOA005) organic waste was encountered at 1.5 m, therefore to reduce problems associated with potential nugget effects¹, a 10 g macro-digestion procedure was used to digest this sample. Using an increased mass of sample helps to

¹ A nugget effect is when the analysis of samples does not adequately represent the composition of the bulk material tested due to the presence of high-concentration nuggets in the material.

minimize the effects of sample inhomogeneity, and thereby obtaining a truer representation of the analytes present in the sample.

Selected samples submitted to Hill Laboratories were analyzed to determine total recoverable (US-EPA method 200.2) antimony (Sb), arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), mercury (Hg), and zinc (Zn).

An extended element suite of 32 elements was undertaken of the 10 samples which had the highest concentrations of arsenic to identify if there were any other elements of potential concern.

Twenty-one soil samples were also analysed for total petroleum hydrocarbons (TPH). Samples were selected for TPH analysis if PDP staff identified municipal waste or obvious signs of petroleum hydrocarbons being present at the location (either based of field observations or historical information). If petroleum hydrocarbons were detected in the samples then the sample TPH chromatographs were evaluated in consultation with the laboratory to determine if follow-up analysis of individual polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOC) or benzene, toluene, ethylbenzene and xylene (BTEX) compounds was required.

3.2.1 Target Analytes

3.2.1.1 Trace Elements

Metals and metalloids included in the analytical suite were arsenic, antimony, copper, lead, mercury and zinc, as these elements are typically found in mine wastes. Sediment samples collected by University of Auckland (Bosely & Maulk, 2008) and WRC have determined that freshwater and marine sediments around Thames contain elevated concentrations of arsenic and mercury and to a lesser extent antimony, copper, lead and zinc. Work undertaken by the University of Otago (Craw D. and Chappell, (2000), Craw, D. (2003), Haffert, L. and Craw, D. (2008a and 2008b) has also determined that sediment and water around former mine sites within Coromandel contain elevated arsenic, antimony and mercury. Although it is typical to include nickel in many soil sampling investigations, historical sampling results around Thames (N. Kim, 2007; WRC, 2011; PDP, 2011) have indicated that nickel is not normally elevated in mine waste or environmental samples in this area.

3.2.1.2 Petroleum Hydrocarbons

Petroleum hydrocarbons are known to be associated with municipal solid waste, landfills and coal ash (potentially from the furnace of the A&G Price foundry located on the south eastern corner of the investigation area); therefore these compounds were identified as potentially being present during the Phase 1 review of the site (CSI, 2010).

PDP experience drawn from other sites similar to this suggests that a site of this age and size will not have a significant, more volatile (and then degradable) contaminants found in landfills, however, benzene and other mono-aromatic hydrocarbons may be present.

3.2.2 Quality Assurance/Quality Control

To determine the variability in the sample composition and the precision of laboratory analysis, duplicate extraction and analysis of 6 samples from the sampling area was undertaken. The relative percentage difference (RPD) for the replicates samples was then calculated to assess the heterogeneity of the sample. Relative percentage difference of less than 30% indicates that the sample results are representative of the average element concentrations in the samples. Relative percentage difference of greater than 50% indicates that the sample may be highly heterogeneous or there may be a problem with the laboratory extraction and analysis.

4.0 Soil Standards and Guidelines

4.1 Introduction

A risk to human health or the environment can only arise if there is a hazard (e.g. contaminated soil or water), a receptor (people or the environment) and an exposure pathway between the hazard and receptor. An absence of any of these components means no risk can exist. As an initial step, it is appropriate to consider through the development of a conceptual site model what receptors exist, how they might be exposed to the contaminant, and if this exposure is possible, whether the concentrations of contaminant in the soil (as measured by the soil testing) are sufficiently high to conclude an adverse effect is possible from that exposure. In the case of people this is an adverse effect on health.

The normal way of establishing whether there is a possibility of effects is to compare the sampling results with soil guidelines values or standards. Depending on the legal context, guidelines typically are advisory values while standards are often mandatory. For simplicity, in this section the term guideline is used for both values unless the context requires a mandatory sense, in which case the term standard is used.

New Zealand has soil guideline and standards for some contaminants but otherwise draws on overseas guideline values. For this report, only human health is being considered and therefore comparisons have been made to human guideline values, not guidelines intended to protect ecological receptors.

The Ministry for the Environment has established policy for selecting guidelines in its document 'Contaminated Land Management Guidelines No.2 – Hierarchy and Application in New Zealand of Environmental Guideline Values' (MfE, 2011a). This document establishes the following principles:

- New Zealand guideline values should be used in preference to guidelines from other nations; and,
- Preference should be given to the guidelines using a risk assessment methodology to establish guideline values.

The MfE then ranks reference documents in the following hierarchy (from most to least preferred):

- : New Zealand derived risk-based guideline values;
- : Internationally derived risk-based guideline values, with preference given to those nations using risk assessment methodologies consistent with those used in New Zealand;
- : New Zealand derived threshold values; then
- : Rest of the world derived threshold values.

This hierarchy has been followed in choosing values.

4.2 Conceptual site model

The sampling was carried out in road verges with the intent of establishing possible risks to Moanataiari residents; the assumption being that the soil under road verges is similar to soil in nearby residential properties. The receptor to be considered is therefore residents of those properties. That is not to say there are not other potential human receptors, e.g. workers who may carry out excavations under the verges or roads, but these people are not considered in this report (and are at considerably less risk than residents exposed to the same contaminant concentrations). A further group of people who may be exposed to soil on road verges are children from nearby houses who use the verges as play areas.

Residents are exposed to soil through a variety of activities and through a number of exposure routes or pathways. The primary routes of exposure are:

- soil ingestion
- absorption of contaminants through the skin from soil that accumulates on exposed skin surfaces (dermal absorption)
- eating of produce (principally vegetables) grown in contaminated soil at home

For volatile contaminants (e.g. petroleum hydrocarbons like petrol) inhalation of vapours from contaminated soil is also a relevant pathway. Breathing in of contaminated dust is not a significant pathway for a typical residential situation (MfE, 2011b) but may be relevant for an excavation worker or similar occupational setting.

New Zealand residential guidelines are derived assuming exposure by soil ingestion, dermal absorption, home-grown produce ingestion and, where relevant, inhalation of vapours. Most overseas guidelines do not include home-grown produce.

The primary contaminants of concern at Moanataiari are arsenic and lead. For these contaminants the primary concern is soil ingestion and to a lesser extent eating of homegrown vegetables. Absorption of arsenic and lead through the skin is negligible.

For children using road verges as play areas soil ingestion and dermal absorption are relevant pathways but eating of produce grown in that soil is not relevant.

There are also schools and child-care centres in Moanataiari. The receptors in these cases are the children and staff. The same exposure pathways exist as for the residential situation, except it would be an unusual school or childcare centre that had a vegetable

garden that provided a significant part of a person's produce diet. Thus, home-grown produce ingestion would not normally be considered for an educational establishment.

4.3 Derivation of Soil Guideline Values

For simplicity, soil guideline values are derived for standard exposure scenarios following internationally recognised methods. Throughout the world, and New Zealand is no exception, one of the standard scenarios for which guidelines are derived is for residential use. New Zealand has chosen to derived guideline values for three residential scenarios; rural residential, standard urban residential and high density residential. The appropriate scenario for Moanataiari residential properties is standard urban residential (MfE, 2011b).

New Zealand has not adopted schools or childcare centres as standard scenarios and therefore has not derived guidelines for these land uses. As a first "screening" comparison to assess whether further study is warranted, one of the standard guideline scenarios can be used, provided the scenario is conservative relative to the likely actual exposure. For example, a residential value could be used for a childcare centre or primary school. A residential value will be conservative because it assumes more frequent exposure to soil than will occur at a school or childcare centre (seven days per week for most weeks in a year rather than the maximum five days per week at a school or childcare centre) and includes a greater allowance for exposure to home-grown produce than is likely to occur even if a school has a vegetable garden. Similarly, the recreational guideline value could be used for a secondary school playing field (MfE, 2011b). However, if on first screening it is apparent that soil samples exceed the initial conservative screening, it is generally more appropriate to derive what are known as site-specific values, using estimates of the actual soil exposure.

The standard scenarios assume that an average child and an average adult inadvertently consume a certain amount of soil each day, get a certain amount of soil sticking to their skin each day and, in the case of the residential scenario, eat a certain amount of homegrown vegetables each day (MfE, 2011b). The amounts are based on international and New Zealand research.

The relative proportions of contaminant entering the body through each exposure route are different for each contaminant. However, soil ingestion is often the greatest contributor to exposure. Most of us routinely ingest a small amount of fine soil particles and house dust (which contains some soil from outside) through actions such as touching our lips with dirty fingers or sucking our fingers which have soil or house dust on them, from dust sticking to our faces during gardening or playing outside and then licking our lips; from children sucking on dirty toys and from eating food with dirty hands. Small children on average ingest more soil than older children and adults.

This soil ingestion does not necessarily occur every day but occurs sufficiently frequently that average daily rates can be assumed to represent what is know as "chronic" or long-term exposure. Soil guidelines are derived to guard against health effects or assess risks from such chronic exposure. Soil guidelines are not derived to guard against or assess acute (short-term) poisoning risks that arise from one-off events or exposure over a few

days. Very few people will ever be exposed to sufficient contaminants in soil to be at risk from acute poisoning. However, there is a sub-set of children who have a behaviour known as soil-pica in which they deliberately eat soil. These children could be at risk if they consumed sufficient contaminated soil. Soil guidelines are not intended to protect such children; the normal approach being behaviour modification (MfE, 2011b).

WRC requested that PDP develop acute arsenic guideline values and to use these values to assess the analytical results. A copy of PDP report outlining the methodology used to derive these values is attached in Appendix E of this report. Acute soil guidelines values have not been derived for any other analyte measured during this investigation.

Different contaminants can have different effects on our health. Contaminants are put into two major categories based on, in simple terms, whether they cause cancer or not, with a slightly different approach to the guideline derivation for the two categories. The two types of contaminants are known as threshold and non-threshold contaminants.

For threshold contaminants there is a limit (generally an average daily limit known as a Tolerable Daily Intake - TDI) above which there may be a risk of a health effect if exposed to that daily amount for long enough (months and years) and below which there should be no effect on health. The intake threshold above which there might be a toxic effect is typically set by consensus amongst toxicology experts, generally at governmental level and often by international agencies such as the World Health Organization and the United Nations Food and Agriculture Organization. The TDI values are deliberately conservative, having factors of uncertainty and safety built into them. Exceeding a TDI does not mean a person will get sick; rather they are intended to be precautionary values above which the onset of subtle health effects might occur. Tolerable Daily Intakes are also used to set limits for contaminants in drinking water.

Daily intakes are calculated relative to body weight (MfE, 2011b). For a given intake a child is more vulnerable than an older person because a child has a lower body weight. For the purposes of guideline derivation in New Zealand a body weight of 13 kg is used, equivalent to about a two-year old. Research suggests a two-year old is likely to ingest more soil than either younger or older children thus, combined with low body weight and being at a developmentally vulnerable period, the small child is considered to be the critical receptor for threshold substances for the residential situation. Babies are considered at less risk because they are generally kept indoors and are insufficiently mobile to get as dirty as a toddler.

The small child being the critical receptor for a threshold contaminant means that for a given soil concentration a young child might be at risk while and older child or adult would not be at risk. For example, the soil concentration could be nearly 11 times greater for an adult compared with a small child. However, regardless of whether a young child happens to be living at a particular property, the lower guideline still applies on the precautionary principle to guard against the possibility of a child being resident at that property some point in the future. This principle is applied internationally.

For non-threshold contaminants there is no safe intake; instead a probabilistic approach is taken to assessing risk (MfE, 2011b). At a certain daily dose for a particular period of exposure (expressed in years) there is deemed by toxicology experts to be a certain probability of cancer, while at some other dose for the same exposure period there is some other probability. It is government policy in New Zealand to set the acceptable probability of excess cancer from contaminants for both soil and drinking water at 1 in 100,000 over a lifetime. A lifetime is defined as 75 years. Looked at another way, the acceptable dose is assumed to cause one extra cancer in a population of 100,000 people over their lifetime of 75 years. This is very much smaller than the normal incidence of cancer. In a population the size of Moanataiari it is unlikely that cancer could ever be definitively attributed to soil contamination as the theoretical rate would be tiny compared with the background incidence of cancer.

For the residential exposure scenario, guideline values for non-threshold substances are calculated by averaging childhood and adult weight-normalised intake rates² over a 24 year period (MfE, 2011b). This period has been selected as a typical maximum time in the same house for most people where the occupancy includes both childhood and adulthood. A lesser period of occupancy will mean a person is at a lower risk of cancer than 1 in 100,000 over a lifetime if the soil concentration is at the soil guideline concentration or, alternatively, a person could tolerate a higher soil concentration for the same risk. However, even if a person lives in the same house for longer than 24 years, the additional period will not necessarily increase the risk. In fact a consequence of the probabilistic approach using weight-normalised intake rates averaged over a lifetime is that somebody living at the same property for 50 years as an adult will have a similar risk to a child living at the property for just a few years.

A further consequence of the probabilistic approach for non-threshold contaminants is that soil concentrations less than the soil guideline value does not eliminate the risk of health effects, it just reduces the chance of effects. If the soil concentration was ten times less than the guideline than everything else being equal, the theoretical risk of cancer would be 1 in 1,000,000 over a lifetime. Alternatively, if the concentration was ten times greater than the guideline the theoretical rate of excess cancers would be 1 in 10,000 over a lifetime, still a small rate.

For the contaminants of greatest importance at Moanataiari, lead is a threshold contaminant and arsenic is a non-threshold contaminant.

4.4 Soil Guideline Application

Guideline values for non-volatile contaminants (the type of contaminants of concern at Moanataiari) apply to surface soil. People mainly contact near surface soil in their day-today lives and grow their vegetables in surface soil. There is no formal definition of surface soil in New Zealand (although the United States Environmental Protection Agency

 $^{^{2}}$ A weight-normalised intake rate is the intake rate divided by the body weight.

defines the surface as being the top 2 cm). For a nation of gardeners, a practical definition is not less than the typical depth of digging, say 0.25 to 0.3 m. However, to provide a buffer over this depth and to encompass other less frequent activities that might bring contaminated soil to the surface, it is reasonable to consider surface soil to be down to 50 cm. Soil deeper than this will be contacted rarely and a higher guideline value should apply.

The following activities might result in potential exposure to arsenic in soil at Moanataiari, in order of decreasing frequency. The list includes an estimate of the depth of soil that a person might be exposed to and the frequency that the person might undertake that activity. It should be noted that the depths and frequency estimates provided below are a matter of professional judgement and are only approximations:

- playing or digging in the garden, a frequent activity (up to several days per week?) - 25 to 30 cm;
- planting shrubs and small trees, an occasional activity (<10 times per year) –
 45 to 60 cm;
- digging fence post holes, a rare activity (every few years?) 60 to 90 cm;
- digging trenches for services for house extensions (20 30 years?) 60 to 90 cm;
- : installing a swimming pool, a one-off activity 2 m.
- : It is common for plant roots to exceed 60 cm in depth but the majority of the root mass will be less than 60 cm deep.

Soil guidelines are also intended to be applied to exposed soil. Grass and other more permanent cover provide a barrier to contact, this reducing the risk. However, for the residential setting grass is not considered permanent and therefore surface soil guidelines apply to lawn areas.

4.5 Selected Guideline Values

4.5.1 Metal and Metalloids

Where available, following the hierarchy in MfE (2011a), results have been compared to the Soil Contaminant Standard (SCS) values from the 'Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health (MfE, 2011b). This document contains SCS for the following contaminants which were included as part of this investigation: arsenic, cadmium, chromium, copper and lead.

The values in MfE (2011b) were derived to support the National Environmental Standard (NES) for Assessing and Managing Contaminants in Soil to Protect Human Health. The NES comes into effect as regulations³ under the Resource Management Act 1991 on Jan

 $^{^3}$ Resource Management (National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations 2011 -

1 2011. From that date, the SCS will be mandatory (i.e. applied as standard) for exposed surface if soil disturbing activities are carried out. Until that date, the SCS have guideline status, but are considered to be the most appropriate values to apply as they have been derived in New Zealand using the most up-to-date methodology.

Where the NES does not contain a SCS for a metal or metalloid contaminant included as part of this assessment (i.e. antimony, thallium and zinc), guideline values have been selected using the hierarchy in MfE (2011a). Using this hierarchy, PDP has determined that the United States Environmental Protection Agency (US EPA) Regional Screening Levels (US EPA, 2011) are the most appropriate guidelines for comparing the analytical results for antimony and thallium, and the Australian NEPC (1999) are the most appropriate for comparing the analytical results for zinc.

The US EPA residential values do not include consideration of home-grown produce consumption but are derived using a childhood soil ingestion rate of 200 mg/kg. This is four times greater than the soil ingestion rate used for the New Zealand derivations and will compensate for not including the produce pathway. The US EPA values are derived as "screening" values to determine whether there is an issue worth looking at further and are not intended to be used as clean-up values.

The residential NEPC (1999) values are intended to apply to sites with home-grown produce but do not explicitly include the produce consumption pathway in their derivation. However, the derivations use a childhood soil ingestion rate of 100 mg/day, twice the rate used for the New Zealand values, and therefore should be conservative. The values are "health Investigation levels" intended for initial screening but are often used as clean-up values in their home jurisdiction.

The selected values are shown in Table 1.0.

4.5.2 Petroleum Hydrocarbons

On the basis of the MfE (2011a) hierarchy, the MfE Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Sites in New Zealand (1999) Tier 1 soil acceptance criteria (hereby refered to as the petroleum hydrocarbon guidelines) have been selected for comparison of the soils results for petroleum hydrocarbons (TPH and PAH compounds). The MfE (1999) Tier 1 criteria have been developed on a risk-based approach for protection of human health for a range of land uses including residential. In addition to site usage, the Tier 1 acceptance criteria take into consideration the environmental settings, including soil type (permeability) and depth to contamination.

The NES SCS value for benzo(a) pyrene equivalent has been used in this assessment instead of the guideline value for proposed in the MfE petroleum hydrocarbons guidelines. The SCS is based on more recent toxicological data and as such is a better indicator of the risks associated with the benzo(a) pyrene like compounds.

As such, the Tier 1 soil acceptance criteria via All Pathways are a reflection of the most stringent criteria associated with the protection of human health via several exposure routes. Comparison of analytical results to these criteria reveals whether a more in-depth review of the potential exposure pathways is required at the site. Where a detailed review is required, route specific criteria are determined based on a site-specific assessment of both potential receptors and exposure pathways.

Therefore, the MfE (1999) Tier 1 soil acceptance criteria (All Pathways) for residential (MfE, 1999) have been applied as the most appropriate screening criteria for the comparison of the results of petroleum hydrocarbon analysis and are presented in Table C-3. The 'sandy silt' soil types have been applied for comparison with the relevant criteria for the soil samples. This soil types is considered to be most representative of the underlying soils encountered during the augering investigation.

4.5.3 Summary of Selected values

Table 1.0 below summarises the selected values.

Table 1: Summary of selected soil guideline values (mg/kg)				
Analyte	Value	Source		
Arsenic	20	Soil Contaminant Standard MfE (2011b)		
Antinomy	31	Regional Screening Level US EPA (2011)		
Cadmium	3	Soil Contaminant Standard MfE (2011b)		
Chromium	460	Soil Contaminant Standard MfE (2011b)		
Copper	No Limit	Soil Contaminant Standard MfE (2011b)		
Lead	210	Soil Contaminant Standard MfE (2011b)		
Mercury	310	Soil Contaminant Standard MfE (2011b)		
Thallium	0.8	Regional Screening Level US EPA (2011)		
Zinc	7,000	Health Investigation Level NEPC (1999)		
TPH	Soil type dependant	Petroleum Hydrocarbons Guidelines (1993)		
Total PAHs	Soil type dependant	Petroleum Hydrocarbons Guidelines (1993)		
BaP (eq.)	25	Soil Contaminant Standard MfE (2011b)		

5.0 Landfill gas assessment criteria

The landfill gas (LFG) assessment criteria used in this assessment are outlined in Table 2.0 below.

The maximum trigger value for methane of 1.25% is based on US EPA recommended values for in-ground methane near buildings (US EPA (2003) 310 CMR 19.132(4) (g & h)).

The maximum concentration for carbon dioxide of 5% has been set based on the recognised industry standard implemented in New Zealand.

Table 2: Summary of selected LFG trigger values (v/v):		
Gas	Trigger Value	
Methane (CH ₄)	1.25%	
Carbon Dioxide (CO ₂)	5%	

6.0 Results

6.1 General Geological Observations

The hand auger sampling locations are shown in Figure 2 in Appendix A and the geological logs for the twenty eight boreholes (MOA001-MOA028) are appended in Appendix B.

Topsoil (consisting of brown silt) was encountered at every borehole location with the exception of boreholes MOAO21 and MOAO27, which encountered gravelly silt and organic material, respectively. The thickness of topsoil generally ranged between approximately 0.1 m and 0.4 m. Fine gravels were encountered in the topsoil material in borehole locations MOAO05, MOAO07-8, MOAO12, MOAO14-015, MOAO19-020, MOAO26 and MOAO28, and shell fragments in borehole locations MOAO07-008.

The topsoil was generally underlain by soil fill material in borehole locations MOA001-018 and MOA020-MOA028 and shelly marine beach sediments in location MOA019. The fill material was inferred to be associated with the mining and reclamation works undertaken at Moanataiari and generally consisted of an orangey/yellowish brown and white, gravelly silt and sand with minor clay. The gravels encountered were up to cobble sized and were of an andesitic (volcanic) nature, although some quartz and pumice grains were also observed mixed with the fill material.

The thickness of the upper fill layer generally ranged between 0.1 m at sample location MOA007 and 0.9 m at sample location MOA010 and was on average approximately 0.5 m thick. The upper fill material was generally of a medium dense/stiff consistency.

Generally the material underlying the upper layer of fill varied between pumiceous clays, silts and sands, shelly beach marine sediments and more silty fill material.

Organic material was encountered at depth in boreholes MOA005 and MOA010 at 1.25 m and 1.2 m respectively.

Boreholes MOA002, MOA004, MOA006, MOA009-012, MOA016, MOA18-021 and MOA025-028 were unable to reach the target depth of 1.5 m due to difficult hand augering conditions through the gravelly fill material.

Groundwater was generally encountered between 0.4 m and 1.45 m depth. Groundwater was not encountered in all sample locations.

6.2 Laboratory Results

Seventy two soil samples were collected by hand auger across Moanataiari Subdivision from 26 to 28 October 2011. Sampling locations are shown in Figure 2 in Appendix A. The results of the analysis of these samples together with the sampling locations and sample depth are shown in Appendix C, Table C-1. A copy of the laboratory reports and chain of custody forms is attached in Appendix D.

6.2.1 Trace Elements

All of the surface soil samples collected from the site exceed the National Environmental Standard (NES) human health Soil Contaminant Standard (SCS) for arsenic and all of the surface samples collected from Kuranui Street east also exceed the lowest boundary of acceptable acute soil concentration of 39 mg/kg derived by PDP (see Appendix E). Four soil samples collected from MOA019, MOA020 and MOA022 exceed the NES Soil Concentration Standards (SCS) value for lead, however only one of these samples MOA019 was collected at the surface (the rest of the samples were collected at 0.5 m sampling interval). The main significance of the SCS in this context is as an indication of the point above which long-term risks would be above the level that would be tolerated in residential soils of a new subdivision under the national standard for contaminants in soil, after 1 January 2012. The SCS does not directly apply in any regulatory sense, because the national standard provisions are not retrospective. In addition, all but two samples were collected from verges, rather than residential soils. However the SCS indicates a point below which long-term health risks are universally deemed to be tolerably low for a standard residential land use. Two samples collected from MOA015 (at 0.5 m and 1.0 m) marginally exceed the antimony guideline value. Thallium was detected above the US EPA Regional Screening Level guideline value for residential soils of 0.8 mg/kg in 8 of 28 surface soils (29%).

6.2.2 Extended Element Suite

The results of the extended element suite are presented in Table C-2 in Appendix C. The extended element suite was undertaken on ten samples and found that thallium was elevated in a number of samples relative to the most conservative international guideline for thallium in soil for human health (0.8 mg/kg, USEPA). The laboratory was asked to

then identify which samples potentially contained concentration of thallium above 1 mg/kg and these samples were analysed for thallium.

6.2.3 Petroleum Hydrocarbons

Eleven samples were analysed for TPHs, however TPH residues were detected at sampling site MOA021 only (see Table B-3 in Appendix B). PDP field staff detected organic residues in the core samples collected from this location which they tentatively identified as being coal ash. An analysis of the samples for PAHs found that the benzo(a)pyrene equivalent (BAPeq) was lower than the soil SCS for human health.

6.2.4 Quality Assurance/Quality Control

To determine the analytical precision of the sampling technique duplicate sample extraction and analysis was undertaken of 6 samples for various sample depths and sampling locations. The results of the QA/QC samples together with the calculated RPD are shown in Table C-4 in Appendix C. The RPD of the duplicate analysis for all elements in all samples was generally less than 30%, the exception being chromium in MOA020 0.1, arsenic and antimony in MOA019 0.1 and antimony in MOA005 0.5 which had a calculated relative percentage difference of between 30 to 50%. This may indicate a degree of heterogeneity within these samples.

A macro-digestion using 10 grams was undertaken on samples MOA022 1.0 m, MOA005 0.5 m and 1.5 m. On one sample (MOA005 1.5 m) the sample was also analysed using a standard 1g digestion technique. The duplicate analysis of sample MOA055 1.5 using the two digestion techniques indicates found that the relative percentage difference between to the two techniques was less than 20% for all elements except antimony (see Table C6).

6.3 XRF Testing Results

6.3.1 XRF testing results

On the 15 November an XRF survey was undertaken at 70 locations alongside the road verges within the Moanataiari subdivision. The raw XRF data in attached in Appendix D and a summary of the XRF findings for arsenic, lead and antimony are shown on Figure 3 in Appendix A. The measurements obtained by the XRF are in units of part per million (ppm) on a weight by weight basis. For soil, this is equivalent to the results reported in the analytical laboratory which are presented in units of milligram of the analyte per kilogram of soil (mg/kg).

6.3.2 Correlation XRF results with Laboratory Results

Arsenic and lead concentrations measured by XRF spectrometer are generally between 30 to 50% lower than those reported by the laboratory. However, in samples which had a very high lead concentration the arsenic concentration readings were less accurate due to known analytical interferences between these two elements. Therefore the reported

arsenic concentration measured by the XRF should be treated with some caution in samples which contain high concentrations of lead.

There was a very poor correlation between the concentrations of cadmium and antimony measured by the XRF and those reported by the analytical laboratory. Since the XRF is only a screening tool, where there is a difference between the XRF readings and the laboratory results, the laboratory results are likely to be more accurate. Comparisons of XRF results with those of a previous composite sample of Moanataiari school playing field suggest that XRF is unreliable for antimony and cadmium. It is believed that spectral artefacts are interfering with the measurement of these elements; therefore the measurements for these elements should be ignored.

6.4 Landfill Gas Monitoring

Soil gas measurements were undertaken at 8 sampling locations where historical information suggested that municipal waste may be present. Measurements of the concentrations of methane, carbon dioxide, carbon monoxide, oxygen and hydrogen sulphide in soil gas are presented in Table C.7 in Appendix C.

Methane was not detected at any of the monitoring locations, however elevated concentrations of carbon dioxide were noted at MOA007 and MOA009.

7.0 Risk Assessment

7.1 Results Assessment and Discussion

Based on the soil testing undertaken to date it appears that arsenic is elevated relative to the SCS in all surface samples, except for one surface composite sample collected from the school recreational fields by WRC in 2007. All surficial soil samples tested as part of this sampling programme exceed the National Soil Contaminant Standard (SCS) for arsenic of 20 mg/kg for residential soils.

The highest surface concentrations of arsenic are generally found east of Kuranui Street. The two highest surface soils samples collected in this area contain arsenic concentrations at 320 and 350 parts per million, which are 16 and 17.5 times higher than the NES SCS for arsenic in residential soils. However, it should be noted that the QA/QC testing and XRF measurements indicate the distribution of arsenic (and other elements) could be very heterogeneous (high degree of variability in concentration of arsenic over short distances). The XRF readings confirmed that the highest arsenic concentrations are generally found east of Kuranui Street. However, they also found that elevated arsenic concentrations may be present at some sampling locations west of Kuranui Street.

In general, arsenic concentrations increase with depth at most sampling locations. The two highest soil arsenic concentrations measured at the site (1,020 and 4,700 mg/kg) were collected from fill material approximately 1 m below the surface. The concentration of arsenic in these soil samples is 51 and 235 times higher than the NES SCS for residential soils. One sample (MOAO20) collected at 0.5 m has soil arsenic

concentration of 1,450 mg/kg (72.5 times the NES), however most soil samples collected from this depth have arsenic concentrations ranging between 100 to 700 mg/kg on the eastern portion of the site. The potential relevance of health screening values (here the SCS) to these deeper samples is that some plant roots and routine gardening activities may extend to these depths, and material from depth may be brought to the surface through excavation activities.

To put this another way the high concentration of arsenic present in soil samples collected below the surface, could potentially poise a risk to people if excavation activities bring this material to the surface. Soil disturbance activities which could potentially upearth this material include:

- : Installing or servicing underground utility lines
- Digging holes for fence posts or housing foundations
- : Installing swimming pools
- Installing driveways
- : Construction of structures such as decks, sheds or home additions, and
- : New home construction

A limited number of soil samples were collected from the school grounds and five XRF measurements were taken across the school playing field. The concentration of arsenic collected from the school garden exceeded the SCS, but historical information from WRC indicates that the average arsenic concentration across the school playing field is lower than NES for residential land use. This finding was confirmed by five XRF readings obtained across the playing field obtained by PDP field staff.

No soil samples were collected within the grounds of the Thames Early Childhood Education Centre. However, one soil sample and several XRF readings were taken near the playcentre, which indicated that there are elevated arsenic concentrations near the playcentre.

The sampling results and the fact that the elevated soil concentration are probably relating to mining rock waste which can naturally be very heterogeneous implies that the concentration of trace elements could potential vary substantially from one sampling location to another, even if these sampling locations are very close together.

All the soil samples were collected from the road verge away from underground services and no soil samples or XRF readings have been undertaken on residential properties. It is possible that the roadside verges may contain more arsenic on average than the adjacent residential properties. This is because the verges may have been subjected to more mixing of material excavated from beneath the ground surface than some of the residential properties, when the roadways were established. Therefore it is not possible to infer soil concentrations on residential properties using the data obtained by laboratory analysis of soil samples or XRF measurements from the adjacent soil sampling locations.

However, based on the widespread occurrence of elevated arsenic concentrations in soils testing from the investigation area it is likely that elevated arsenic concentrations are present at least at depth and possibly at ground surface on some of the residential properties within the Moanataiari subdivision. Testing of all the individual residential properties within the subdivision would be required to determine the extent of the problem.

In addition to the elevated concentration of arsenic found in the soils, elevated concentrations of lead and thallium, which exceed relevant soil guideline values for protecting human health on residential properties, were present in some surface samples.

XRF measurements found elevated concentration of lead at several locations between Ensor, Kuranui Street and Tararu Road. Readings of up to 1100 mg/kg were detected in a surface soil samples measurement from these locations indicating that lead present at an elevation concentration may be on some residential properties. It should be noted however that XRF measurements for lead were found to be generally 20 to 50% lower than those values obtained by the analytical laboratory. Therefore if any further laboratory testing of soil is undertaken, lead should be included in the analytical suite.

XRF measurements also detected high concentrations of antimony and cadmium at some sampling locations but these findings are not supported by the laboratory testing of surface samples. Comparison between XRF readings and the laboratory results found the two datasets were different by orders of magnitude, indicating that XRF readings for antimony and cadmium at concentrations of 50 mg/kg or lower should be discounted. Nevertheless any further soil testing undertaken at the site should include these elements.

Petroleum hydrocarbons were detected at reasonably low levels at one location adjacent to the Play Centre (MOA021). Due to the presence of coal ash noted during the hand augering investigation of this locality all samples collected from MOA021 were also analysed for polycyclic aromatic hydrocarbons (PAHs). PAHs were present at low concentrations in the two depth samples obtained from this locality, however the concentrations of PAHs were lower than the National Soil Contaminant Standard (SCS) for residential soils for benzo(a) pyrene equivalent.

Landfill gas was not detected at any of the sampling locations, although carbon dioxide concentrations of between 5 to 10% were detected at MOA007 and MOA009. Although these values are higher than carbon dioxide concentrations which are typically encountered in most gas spiking surveys, carbon dioxide concentrations of up to 10% can be detected in natural soils especially if calcareous material is in the soils. Rocks from hydrothermal quartz vein systems can contain high concentrations of calcium carbonate which when reacting with acid (such as carbonic acid in rainwater) releases carbon dioxide. This might be the reason for the elevated carbon dioxide readings obtained from these two sampling sites.

8.0 Conclusions and Recommendations

The National Soil Contaminant Standard (SCS) for arsenic of 20 mg/kg for residential soils was used in this work as an index value to denote the potential for long-term risk on residential soils that is higher than would be tolerated at a new subdivision. This value was exceeded at all sampling sites tested during this investigation. In some western areas this exceedance was marginal, but in other eastern areas it was substantial, indicating the potential for risks to human health and a need for further investigation. Therefore, PDP recommends that:

- : Soil testing of all residential sites within the subdivision be carried out.
- Based on the laboratory testing of the soil samples and XRF measurements the analytical suite should include antimony, arsenic, cadmium, lead and thallium.
- : Residents and workers (including maintenance workers and contractors) at the subdivision should be provided with advice on how to minimise health risks that may be associated with coming into contact with chemically impacted soils within the Moanataiari subdivision.
- Further testing of petroleum hydrocarbons and landfill gas is not required at the site.

9.0 References

- Boseley, C. and Mauk, J.L., 2008, Mercury contamination from historic gold mining in the Coromandel, New Zealand: Proceedings of the Australasian Institute of Mining and Metallurgy New Zealand Branch Annual Conference 2008, p. 23-32.
- Craw, D. & Chappell, D. A. (2000): Metal redistribution in historic mine wastes, Coromandel Peninsula, New Zealand, New Zealand Journal of Geology and Geophysics, 43:2, 187-198
- Craw (2003) Geological controls on metals in the New Zealand environment. Notes for symposium on: Metal contaminants: Sources and effects on human health and the environment. Wellington NZ. February 2003
- Croucher, B. (2011) MfE pers com.
- CSI 2010. Moanataiari Subdivision, Thames, Scoping Report- Historical Contamination Review.
- Haffert, L., Craw, D. 2008a. Mineralogical controls on environmental mobility of arsenic from historic mine processing residues, New Zealand. Applied Geochemistry 23: 1467-1483.
- Haffert, L., Craw, D. 2008b. Processes of attenuation of dissolved arsenic downstream from historic gold mine sites, New Zealand. The Science of the Total Environment 405: 286-300

- MfE, 1999. Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Sites in New Zealand. Tier 1 soil acceptance criteria. Ministry for the Environment.
- MfE, 2001 Planning for Climate Change Effects on Coastal Margins. A report prepared for the Ministry for the Environment as part of the New Zealand Climate Change Programme. September 2001, Ref. ME410. Available from: http://www.climatechange.govt.nz/resources/reports/effect-coastal-sep01/part5.pdf
- MfE, 2004. Contaminated Land Management Guideline No. 5. Soil Investigation and Analysis of Soils. Ministry for the Environment.
- MfE, 2011a. Contaminated Land Management Guideline No. 2. Hierarchy and Application in New Zealand of Environmental Guideline Values. Ministry for the Environment.
- MfE, 2011b. Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health Office of the Minister for the Environment.
- NEPC, 1999. National Environmental Protection Measure on the Investigation Levels for Soil and Groundwater. National Environmental Protection Council, Australia.
- Kim, N. 2007 Trace elements in sediments of the lower eastern coast of the Firth of Thames. Environment Waikato Technical Report 2007/08.
- Kim, N. 2011 WRC, pers com.
- PDP 2011 Sediment Quality Assessment of Waihou River Mouth and Coromandel Harbour at Te Kouma. Unpublished technical report prepared for Thames Coromandel District Council
- WRC 2011, Unpublished data
- US EPA 2011 US EPA Region 9 Regional Screening Levels Summary Table updated June 2011. Accessed from http://www.epa.gov/region9/superfund/prg/
- US EPA. 2003 Commonwealth of Massachusetts Regulations. 310 CMR 19.000: SOLID WASTE MANAGEMENT. http://www.mass.gov/dep/recycle/laws/310cmr19.htm.

Appendix AFigures

Figure 1A: GENERAL AREA MAP Scale: 1:500,000 (A4)

Scale: 1:50,000 (A4) Figure 1B: LOCAL AREA MAP Scale: 1:15,000 (A4)

A02469100M001_locationplan Nov 11 Draft1

PATTLE DELAMORE PARTNERS LTD "

FIGURE 2 : SITE PLAN AND SAMPLING LOCATIONS WITH ARSENIC RESULTS

Appendix BSoil Logs

LOG OF HAND AUGER Moanataiari Subdivision Site Investigation Job NO: A02469100

HOLE NO. MOAOO1

CLIE	NT: Waikato Regional Cou		LOCATIO	N: M	oanat	aiari, Th	names.		7102 10			
	RT DATE: 27/10/2011 DATE: 27/10/2011	E1824590.64 N5887925.42	4 TOTAL DEPTH: 1.5m			LOGGED BY: CSF			SHEET 1 OF 1			
	UND LEVEL: OF CASING:	ļ.		90					EL	IN	ISTALLATIO	V
INTERPRE- TATION	DESCRIPTION ((based on c	OF SOIL / ROCK cuttings etc.)		GRAPHIC LOG	DEPTH (m)	RL (m)	SAMPLES	TESTS	WATER LEVEL GAIN / LOSS			
	SILT; brown. Firm; moist; low	plasticity. [TOPS0	VIL]		0.0	0	_ MOA001					
FILL	Clayey SILT with some sand a yellow orange mottled white. S				-		0.5	XLFG XLFG				
	silty, fine grained SAND with s gravels; light green streaked g plasticity, moist.							7. -				
	becomes black speckled whi plasticity.	ite and orange. S	tiff; low		1.0 —	1	• MOA001 1.0					
	silty fine grained SAND with m slight plasticity; moist.				-							
	becomes pinkish orange. Ve				_		MOA001 ● 1.5		<u> </u>			
	END OF HAND AUGER AT 1.5	m Target Depth										

Notes: 1. LFG = Land Fill Gas Refer to Table B6 for results. 2. Groundwater was encountered at 1.4 m depth on 27/10/2011

3. Coordinates have been recorded by high precision GPS and are presented in

KEY Groundwater Level – Water Gain → Water Loss Grab sample
 PID Reading (ppm)

Drilled By: Diameter: 50mm Method: Hand Auger Datum:

Filename: A02469100B001_M0A001

LOG OF HAND AUGER

HOLE NO. MOAOO2

PATTLE DELAMORE PARTNERS LTD Moanataiari Subdi				Site	Inve	stiga	tion	JOB NO:	A0246	9100	
CLIE	NT: Waikato Regional Cour	ncil	LOCATIO	N: M	loanat	aiari, Th	names.				
	RT DATE: 27/10/2011 DATE: 27/10/2011	COORDINATES: E1824636.64 N5887798.54	TOTAL D	EPTH:	0.9	m	LOGGEI	BY: G.	JS	SHEET 1	OF 1
	UND LEVEL: OF CASING:)G					» EL	II	NSTALLATION	N
INTERPRE- TATION	DESCRIPTION C (based on c	•	GRAPHIC LOG	(w) HIA30	RL (m)	SAMPLES	TESTS	WATER LEVEL GAIN / LOSS			
	SILT; brown. Firm; moist; low p	plasticity [TOPSOIL].		0.0	0	MOA002					
Ī	Clayey SILT some fine to coars moderate plasticity.	se sand; light brown. Stiff; moist;		_		• 0.1					
CAPPING FILL	medium SAND minor shells; g	rey. Loosely packed; moist.									
CAPPI	Clayey SILT with some sand; li green. Stiff; moist; moderately					MOA002 ● 0.5	XLFG				
	Clayey SILT with minor fine to Stiff; moist; moderately plastic coarse SAND; white pumiceou	with inclusions of medium to		_							
	Clayey SILT; light orangey yello plastic.	w. Stiff; moist; moderately				MOA002 ● 0.9					
	END OF HAND ALICED AT O ON	DEFLICAL									

END OF HAND AUGER AT 0.9m REFUSAL

Notes: 1. No groundwater was encountered on 27/10/2011.

2. LFG = Land Fill Gas Refer to Table B6 for results.

3. Coordinates have been recorded by high precision GPS and are presented in

KEY Groundwater Level
Water Gain → Water Loss Grab sample PID Reading (ppm)

Drilled By: Diameter: 50mm Method: Hand Auger Datum:

Filename: A02469100B002_MOA002

solutions for your environment

LOG OF HAND AUGER

HOLE NO. MOAOO3

	TTLE DELAMORE PARTNERS LTD	woanatalari Subuly	131011	Site	IIIVC	suga	uon	JOB NO	: AU246	9100	
CLIEN	งา: Waikato Regional Cou	ncil	LOCATIO	DN: M	loanat	aiari, Th	names.				
STAR END	T DATE: 27/10/2011 DATE: 27/10/2011	TOTAL D	DTAL DEPTH: 1.5m LOGGED BY: GJ			JS	S SHEET 1 OF 1				
TOP (JND LEVEL: DF CASING:		00					S.	II	NSTALLATIO	V
INTERPRE- TATION		DF SOIL / ROCK cuttings etc.)	GRAPHIC LOG	DEPTH (m)	RL (m)	SAMPLES	TESTS	WATER LEVEL GAIN / LOSS			
	SILT; brown. Firm to stiff; moi:	st; low plasticity [TOPSOIL].		0.0	0	MOA003 ● 0.1					
	Clayey SILT with some fine to yellowish brown. Stiff; moist;	coarse sand and fine gravel; light moderate plasticity.									
	Medium SAND minor shells; g	grey. Loosely packed; moist.		_							
FILL	Clayey SILT with minor fine to gravel; medium orange mottle moderately plastic.	medium sand and trace medium ed light orange. Stiff; moist;				MOA003 • 0.5					
	SILT with minor clay and fine greenish/brownish grey. Stiff; is pumice.	to coarse sand; moist; moderately plastic; gravel		1.0 —	1	● MOA003 1.0					
	SILT with some clay and trace fine to coarse sand; dark grey mottled white. Stiff; moist; moderately plastic; gravel is pumice.			-		MOA003					
	END OF HAND AUGER AT 1.5r	n TARGET DEPTH									

Notes: 1. No groundwater was encountered on 27/10/2011.

2. Coordinates have been recorded by high precision GPS and are presented in

KEY Groundwater Level
Water Gain → Water Loss Grab samplePID Reading (ppm)

Drilled By: Diameter: 50mm Method: Hand Auger

Datum:

Filename: A02469100B003_M0A003

LOG OF HAND AUGER

HOLE NO. MOAOO4

P.	ATTLE DELAMORE PARTNERS LTD	/ISION 3	SILE	IIIVE	suga	uon	JOB NO:	A0246	9100		
CLIE	NT: Waikato Regional Cour	ncil	LOCATIO	N: M	loanat	aiari, Th	names.				
	RT DATE: 26/10/2011 DATE: 26/10/2011	COORDINATES: E1824742.83 N5887623.4	TOTAL D	EPTH:	0.8	5m	LOGGEI	D BY: G.	JS	SHEET 1	OF 1
	UND LEVEL: OF CASING:)G					EL S	11	NSTALLATIO	V
INTERPRE- TATION	DESCRIPTION C (based on c	•	GRAPHIC LOG	DEPTH (m)	RL (m)	SAMPLES	TESTS	WATER LEVEL GAIN / LOSS			
	SILT with trace fine to medium plasticity [TOPSOIL].	sand; brown. Firm; moist; low		0.0	0	MOA004 ● 0.1					
		coarse gravel; brown. Stiff; moist astic; gravel is angular andesite.		_							
FILL	SILT with some coarse sand; v Stiff; dry; non-plastic.	white with few orange mottles.		_		● MOA004 0.5					
	SILT with minor coarse sand a medium brown mottles. Stiff;	nd fine gravel; dark brown with moist.		_							
	Medium to coarse SAND with to coarse gravel; orange with omottles. Stiff/tightly packed; m	0 0,		_		● MOA004 1.0					

END OF HAND AUGER AT 0.85m REFUSAL

Notes: 1. Groundwater was not encountered on 26/10/2011.

2. Refusal at 0.85m.

3. Coordinates have been recorded by high precision GPS and are presented in

KEY Groundwater Level
Water Gain → Water Loss Grab sample
 PID Reading (ppm)

Drilled By: Diameter: 50mm Method: Hand Auger Datum:

Filename: A02469100B004_M0A004

pdp Solutions for your environment

LOG OF HAND AUGER Moanataiari Subdivision Site Investigation

HOLE NO. MOA005

JOB NO: A02469100

P	ATTLE DELAMORE PARTNERS LTD	iaii Subuivi	31011	<u> </u>		Juga		JOB NO:	A0246	9100		
CLIE	NT: Waikato Regional Cou		LOCATION: Moanataiari, Th			hames.						
STAF END	RT DATE: 27/10/2011 DATE: 27/10/2011	COORDINATES:	E1824870.42 N5887623.79	TOTAL D	EPTH:	1.5	m	LOGGE	BY: C	SF	SHEET 1	OF 1
TOP	UND LEVEL: OF CASING:			96					EL	11	NSTALLATION	٧
INTERPRE- TATION		OF SOIL / ROCK cuttings etc.)		GRAPHIC LOG	DEPTH (m)	RL (m)	SAMPLES	TESTS	WATER LEVEL GAIN / LOSS			
	SILT with minor fine gravels; b	rown. Dry; friable	[TOPSOIL].		0.0	0	_ MOA005					
FILL	Silty fine grained SAND some orange mottled white. Stiff; fri	able.			-		0.1 MOA005 0.5	XLFG				
	Fine grained Sandy SILT with a brownish dark grey. Soft; wet.				1.0 —	−-1	MOA005 1.0		Ş			
		entry come glass			-		●MOA005 1.5					

END OF HAND AUGER AT 1.5m TARGET DEPTH

Notes: 1. LFG = Land Fill Gas Refer to Table B6 for results.

2. Groundwater was encountered at 0.9 m depth on 27/10/2011.

3. Diffucult to recover core below 1.4 m depth.

4. Coordinates have been recorded by high precision GPS and are presented in

KEY

☐ Groundwater Level
☐ Water Gain

→ Water Loss
☐ Grab sample
X PID Reading (ppm)

Drilled By:
Diameter: 50mm
Method: Hand Auger

Datum:

Filename: A02469100B005_M0A005

pop Solutions for your environment
DATTLE DELAMODE DADTMEDO LEO

HOLE NO. MOAOO6

P.	ATTLE DELAMORE PARTNERS LTD	vision (Site	Inve	stiga	tion	JOB NO:	A0246	9100		
CLIE	NT: Waikato Regional Cour	ncil	LOCATIO	N: M	loanat	aiari, Th	names.				
	RT DATE: 27/10/2011 DATE: 27/10/2011	COORDINATES: E1824791.7 N5887723.2	TOTAL D	EPTH:	0.9	m	LOGGEI	BY: G.	JS	SHEET 1	OF 1
	UND LEVEL: OF CASING:) [ΞL	II	NSTALLATIO	7
INTERPRE- TATION	DESCRIPTION C (based on c		GRAPHIC LOG	DEPTH (m)	RL (m)	SAMPLES	TESTS	WATER LEVEL GAIN / LOSS			
	SILT; brown. Firm to stiff; mois	st to dry; non-plastic [TOPSOIL].		0.0	0	_ MOA006					
	Sandy SILT with some fine to moist; low plasticity; sand is fi andesite.			_		0.1					
	Cobbles; grey. Tightly packed; angular andesite.	cobbles are slightly weathered									
FILL	Clayey SILT with minor fine to moist; moderately plastic.	coarse gravel; orange. Stiff;		_		● MOA006 0.5	XLFG				
	Sandy SILT; white with orange plastic; sand is fine to coarse	mottles. Stiff; moist; moderately, pumiceous.		_							
				_		● MOA006	XLFG				

END OF HAND AUGER AT 0.9m REFUSAL

Notes: 1. Groundwater was not encountered on 27/10/2011.

2. Refusal at 0.9m.

3. LFG= Land Fill Gas Refer to Table B6 for results.

4. Coordinates have been recorded by high precision GPS and are presented in

Groundwater Level
Water Gain → Water Loss Grab sample
 PID Reading (ppm)

KEY

Drilled By: Diameter: 50mm Method: Hand Auger

Datum:

Filename: A02469100B006_M0A006

LOG OF HAND AUGER Moanataiari Subdivision Site Investigation

HOLE NO. MOAOO7

P	ATTLE DELAMORE PARTNERS LTD	Modifatalari Subulv	131011	<u> </u>	11140	Juga	uon	JOR NO:	: AU246	9100	
CLIE	NT: Waikato Regional Cou	ncil	LOCATIO	N: M	oanat	aiari, Th	names.				
	RT DATE: 27/10/2011 DATE: 27/10/2011	COORDINATES: E1824775.24 N5887819.75	TOTAL D	EPTH:	1.5	m	LOGGEI	D BY: C	SF	SHEET 1	OF 1
TOP	UND LEVEL: OF CASING:	00					'EL S	II	NSTALLATIO	7	
INTERPRE- TATION		DF SOIL / ROCK uttings etc.)	GRAPHIC LOG	DEPTH (m)	RL (m)	SAMPLES	TESTS	WATER LEVEL GAIN / LOSS			
	SILT; brown. Dry; friable; contains a subsecome shelly silt.	ains shell fragments [TOPSOIL].		0.0	0	MOA007 0.1					
-	Silty CLAY with minor fine grai streaked reddish orange. Stiff			-							
	Silty CLAY; reddish orange. Socontains shell fragments.	oft; saturated; high plasticity.		_		● MOA007 0.5	XLFG				
FILL				_							
	Silty, well graded SAND with fi brown spekcled white and pur contains occasional shell frag	ple. Loose; moist; friable;		1.0 —	1	MOA007 1.0	Xred				
	contains clay and pumiceous speckled white. Wet.	s inclusions; reddish brown		_				_			
	Silty fine grained GRAVEL with orange red. loose; saturated;	some clay and medium sand; low plasticity.		_		MOA007 1.5		-			
			v \/ \/ \/								

END OF HAND AUGER AT 1.5m TARGET DEPTH

Notes: 1. LFG = Land Fill Gas Refer to Table B6 for results.

2. Diffucult to recover core below 1.3 m depth.

3. Groundwater was encountered at 1.3 m depth on 27/10/2011.

4. Coordinates have been recorded by high precision GPS and are presented in

KEY Groundwater Level
Water Gain → Water Loss Grab sample PID Reading (ppm)

Drilled By: Diameter: 50mm Method: Hand Auger

Datum:

Filename: A02469100B007_M0A007

pdp Solutions for your andrews

LOG OF HAND AUGER

HOLE NO. MOAOO8

P/	ATTLE DELAMORE PARTNERS LTD	Moanataiari Subdiv	ision S	Site	Inve	stiga	tion	JOB NO	: A0246	9100	
CLIE	NT: Waikato Regional Cour	ncil	LOCATIO	N: M	loanat	aiari, Th	names.				
STAF END	RT DATE: 28/10/2011 DATE: 28/10/2011	COORDINATES: E1824768.20 N5887920.46	TOTAL D	EPTH:	1.5	m	LOGGED BY: CSF			SHEET 1 0	F 1
TOP	UND LEVEL: OF CASING:		90					'EL S	ll ll	NSTALLATION	
INTERPRE- TATION	DESCRIPTION C (based on c		GRAPHIC LOG	DEPTH (m)	RL (m)	SAMPLES	TESTS	WATER LEVEL GAIN / LOSS			
	SILT with minor fine gravels; b	rown. Dry; friable [TOPSOIL].		0.0	0	_ MOA008					
	Sandy SILT with some clay; br friable. Contains occasional to andesitic angular gravels. San	psoil mottling and well graded		-		• 0.1					
T	Silty fine grained SAND with m speckled white. Medium densipumiceous.			_		MOA008 0.5	XLFG				
FILL	contains angular quartz and becomes moist to wet.	ins angular quartz and fine grained gravel inclusions, es moist to wet.					XLFG				
	becomes wet, high plasticity			-		MOA008 ● 1.5					
	END OF HAND AUGER AT 1.5n	TARGET DEPTH	<i>v</i> ∨ ∨ ∨				ı		<u> </u>		

Notes: 1. LFG = Land Fill Gas Refer to Table B6 for results.

2. Groundwater was not encountered on 28/10/11.

3. Coordinates have been recorded by high precision GPS and are presented in

KEY Groundwater Level
Water Gain → Water Loss Grab samplePID Reading (ppm)

Drilled By: Diameter: 50mm Method: Hand Auger

Datum:

Filename: A02469100B008_M0A008

podo Solutions for your environment	
DATTLE DELAMODE DADTNEDO LEO	

HOLE NO. MOAOO9

F	PATTLE DELAMORE PARTNERS LTD	Moanatalari Subdiv	Sion 3	site	inve	suga	tion	JOB NO:	A0246	9100	
CLIE	NT: Waikato Regional Cou	ncil	LOCATIO	N: M	loanat	aiari, Th	names.				
	RT DATE: 26/10/2011 DATE: 26/10/2011	COORDINATES: E1824861.42 N5887959.78	TOTAL D	EPTH:	0.9	7m	LOGGE	D BY: G.	JS	SHEET 1 (DF 1
	OUND LEVEL: OF CASING:)G					EL ,	11	NSTALLATION	~
INTERPRE- TATION	DESCRIPTION ((based on c	·	GRAPHIC LOG	(w) HLA30	RL (m)	SAMPLES	TESTS	WATER LEVEL GAIN / LOSS			
ПН	SILT with minor clay and trace Firm to stiff; moist to dry; low	plasticity [TOPSOIL]. coarse sand minor fine to coarse d white. Stiff; moist; moderate		0.0	О	MOA00S 0.1	XLFG				

END OF HAND AUGER AT 0.97m REFUSAL

Notes: 1. Groundwater was not encountered on 26/10/2011.

2. Refusal at 0.97m.

3. LFG=Land Fill Gas Refer to Table B6 for results.

4. Coordinates have been recorded by high precision GPS and are presented in

KEY Groundwater Level
Water Gain → Water Loss Grab sample
 PID Reading (ppm)

Drilled By: Diameter: 50mm Method: Hand Auger

Datum:

Filename: A02469100B009 MOA009

LOG OF HAND AUGER

HOLE NO. MOAO10

P	ATTLE DELAMORE PARTNERS LTD	iari Subdivi	SIUII	one	IIIVE	suga	uon	JOB NO:	A0246	9100		
CLIE	NT: Waikato Regional Cou	ncil		LOCATIO	N: M	oanat	aiari, Th	names.				
	RT DATE: 26/10/2011 DATE: 26/10/2011	COORDINATES:	E1824886.01 N5887840.91	TOTAL D	EPTH:	1.2	5m	LOGGE	BY: G	IS	SHEET 1	OF 1
TOP	UND LEVEL: OF CASING:			0G					EL.	IN	ISTALLATIO	V
INTERPRE- TATION		OF SOIL / ROCK uttings etc.)		GRAPHIC LOG	DEPTH (m)	RL (m)	SAMPLES	TESTS	WATER LEVEL GAIN / LOSS			
	SILT with minor clay and trace Firm to stiff; moist to dry; low				0.0	0	MOA010 0.1					
FILL	SILT with some clay; minor fin coarse gravel; light orange mo plasticity; gravel is angular and 0.6m: colour light orange motors		-		MOA010 ● 0.5	XLFG						
	SILT with some clay minor fine coarse gravel; light orange wit mottles. Stiff; wet; low plastic		1.0 —	− -1	● MOA010 ● 1.0		<u>√</u>					
	PEAT; black; fibrous; spongey.	Soft; wet		$\sim\sim$	-							

END OF HAND AUGER AT 1.25m REFUSAL

Notes: 1. Refusal at 1.25m.

2. Groundwater was encountered at 0.8 m depth on 26/10/2011.

3. LFG=Land Fill Gas refer to Table B6 for results.

4. Coordinates have been recorded by high precision GPS and are presented in NZTM

KEY Groundwater Level
Water Gain → Water Loss Grab sample PID Reading (ppm)

Drilled By: Diameter: 50mm Method: Hand Auger

Datum:

Filename: A02469100B010_M0A010

LOG OF HAND AUGER

HOLE NO. MOAO11

PATTLE DELAMORE PARTNERS LTD WOAHALAIAN SI CLIENT: Waikato Regional Council				iari Subdivi	SIOH	one	ilive	Suga	LIOH	JOB NO:	: A0246	9100	
CLIE	NT: Waik	ato Regional Cour	ncil		LOCATIO	N: M	oanat	aiari, Th	names.				
		26/10/2011 26/10/2011	COORDINATES:	E1824902.85 N5887750.57	TOTAL D	EPTH:	0.2	8m	LOGGE	BY: G	JS	SHEET 1	OF 1
	UND LEVEL: OF CASING:				96					EL	IN	NSTALLATIO	٧
INTERPRE- TATION		DESCRIPTION C (based on cu	•		GRAPHIC LOG	DEPTH (m)	RL (m)	SAMPLES	TESTS	WATER LEVEL GAIN / LOSS			
	SILT trace plastic [TO	fine to medium sand PSOIL].	d; brown. Firm; n	noist; non-		0.0	0						
FILL	yellowish b	clay and fine to coa prown mottled orang to low plasticity; gra	e and white. Stiff	f; moist;				MOA011 0.1					
	_	LT some clay; orang moist; non-plastic.	e mottled white a	and light yellow.				●MOA011 0.5					

END OF HAND AUGER AT 0.28m REFUSAL

Notes: 1. No groundwater was encountered on 26/10/2011.

2. Refusal at 1.25m.

3. Coordinates have been recorded by high precision GPS and are presented in

KEY Groundwater Level
Water Gain → Water Loss Grab samplePID Reading (ppm)

Drilled By: Diameter: 50mm Method: Hand Auger

Datum:

Filename: A02469100B011_M0A011

pdp	Solutions for your environment
DATTLE DELAMODE	DADTNIEDO LED

HOLE NO. MOA012

ATTLE DELAN	ORE PARTNERS LTD	Moanata	iari Subdivi	ision S	Site	Inve	stiga	tion	JOB NO	: A0246	9100	
INT: Wa	nikato Regional Cour	ncil		LOCATIO	N: M	loanat	aiari, Th	names.				
START DATE: 27/10/2011 COORDINATES: E1824978.9: N5887663.0				TOTAL DI	EPTH:	0.5	m	LOGGE	BY: C	SF	SHEET 1	OF 1
OF CASIN	G: DESCRIPTION C	•		GRAPHIC LOG	DEPTH (m)	RL (m)	SAMPLES	TESTS	WATER LEVEL GAIN / LOSS	11	NSTALLATIO	N
SILT with	ND with trace medium	sized gravels; br			0.0	0	0.1					
	RT DATE: DATE: DUND LEVE OF CASIN SILT with	RT DATE: 27/10/2011 DATE: 27/10/2011 DUND LEVEL: OF CASING: DESCRIPTION C (based on c) SILT with minor fine gravels; b	ENT: Waikato Regional Council RT DATE: 27/10/2011 COORDINATES: DUND LEVEL: OF CASING: DESCRIPTION OF SOIL / ROCK (based on cuttings etc.) SILT with minor fine gravels; brown. Dry; friable	ENT: Waikato Regional Council RT DATE: 27/10/2011	ENT: Waikato Regional Council RT DATE: 27/10/2011 COORDINATES: E1824978.92 N5887663.08 DUND LEVEL: OF CASING: DESCRIPTION OF SOIL / ROCK (based on cuttings etc.) SILT with minor fine gravels; brown. Dry; friable [TOPSOIL].	ENT: Waikato Regional Council RT DATE: 27/10/2011 COORDINATES: E1824978.92 N5887663.08 DUND LEVEL: OF CASING: DESCRIPTION OF SOIL / ROCK (based on cuttings etc.) SILT with minor fine gravels; brown. Dry; friable [TOPSOIL]. Silty SAND with trace medium sized gravels; brownish orange	ENT: Waikato Regional Council RT DATE: 27/10/2011 COORDINATES: E1824978.92 TOTAL DEPTH: 0.5 DUND LEVEL: OF CASING: DESCRIPTION OF SOIL / ROCK (based on cuttings etc.) SILT with minor fine gravels; brown. Dry; friable [TOPSOIL]. Silty SAND with trace medium sized gravels; brownish orange	ENT: Waikato Regional Council RT DATE: 27/10/2011 COORDINATES: E1824978.92 N5887663.08 DUND LEVEL: OF CASING: DESCRIPTION OF SOIL / ROCK (based on cuttings etc.) SILT with minor fine gravels; brown. Dry; friable [TOPSOIL]. Silty SAND with trace medium sized gravels; brownish orange mottled white. Dense; dry; friable.	ENT: Waikato Regional Council RT DATE: 27/10/2011 DATE: 27/10/2011 COORDINATES: E1824978.92 N5887663.08 DESCRIPTION OF SOIL / ROCK (based on cuttings etc.) SILT with minor fine gravels; brown. Dry; friable [TOPSOIL]. Silty SAND with trace medium sized gravels; brownish orange mottled white. Dense; dry; friable.	ENT: Waikato Regional Council LOCATION: Moanataiari, Thames. RT DATE: 27/10/2011 COORDINATES: E1824978.92 N5887663.08 TOTAL DEPTH: 0.5m LOGGED BY: C N5887663.08 DESCRIPTION OF SOIL / ROCK (based on cuttings etc.) SILT with minor fine gravels; brown. Dry; friable [TOPSOIL].	ENT: Waikato Regional Council RT DATE: 27/10/2011 COORDINATES: E1824978.92 N5887663.08 DUND LEVEL: OF CASING: DESCRIPTION OF SOIL / ROCK (based on cuttings etc.) SILT with minor fine gravels; brown. Dry; friable [TOPSOIL]. Silty SAND with trace medium sized gravels; brownish orange mottled white. Dense; dry; friable.	ENT: Waikato Regional Council LOCATION: Moanataiari, Thames. RT DATE: 27/10/2011 COORDINATES: E1824978.92 N5887663.08 DIATE: 27/10/2011 COORDINATES: E1824978.92 N5887663.08 DESCRIPTION OF SOIL / ROCK (based on cuttings etc.) SILT with minor fine gravels; brown. Dry; friable [TOPSOIL]. Silty SAND with trace medium sized gravels; brownish orange mottled white. Dense; dry; friable.

END OF HAND AUGER AT 0.5m REFUSAL

Notes: 1. Groundwater was not encountered on 27/10/11.

3. Coordinates have been recorded by high precision $\ensuremath{\mathsf{GPS}}$ and are presented in

KEY Groundwater Level
Water Gain → Water Loss Grab samplePID Reading (ppm)

Drilled By: Diameter: 50mm Method: Hand Auger

Datum:

Filename: A02469100B012_M0A012

pdp Solutions by your environment

LOG OF HAND AUGER Moanataiari Subdivision Site Investigation

HOLE NO. MOA013

P.	ATTLE DELAMORE PARTNERS LTD	Moanataiari Subdiv	odivision Site Investigation JOB NO: A02469100								
CLIE	NT: Waikato Regional Cou	ncil	LOCATIO	N: M	oanat	aiari, Th	names.	es.			
	RT DATE: 27/10/2011 DATE: 27/10/2011	COORDINATES: E1825006.35 N5887750.79	TOTAL D	EPTH:	1.5	m	LOGGE	BY: G.	JS	SHEET 1	OF 1
		DF SOIL / ROCK cuttings etc.)	GRAPHIC LOG	DEPTH (m)	RL (m)	SAMPLES	TESTS	WATER LEVEL GAIN / LOSS	11	ISTALLATIOI	N
FILL	SILT with some fine to coarse low plasticity; friable. SILT with minor fine to coarse gravel; brown. Stiff; moist; mo pumice.	coarse gravel; orangey brown. ty; gravel is angular andesite. gravel; dark brown. Stiff; moist; sand and trace fine to medium oderate plasticity; gravel is te with some grey streaks. Firm;		1.0 —		MOA013 ● 0.1 MOA013 ● 0.5 MOA013 ■ 1.0		$A_{\mathbb{I}}$			
	END OF HAND AUGER AT 1.5r	n									
Note		d at 1.0 m depth on 27/10/2011. ded by high precision GPS and are prese	ented in	< V → V • G	Vater Ga Vater Lo Grab sar	oss		Drilled By Diameter Method: Datum:	: 50mr Hand	n Auger 69100B013	MOAO13

pdp Solutions for your environment

LOG OF HAND AUGER Moanataiari Subdivision Site Investigation

HOLE NO. MOA014

JOB NO: A02469100

-	ATTLE DELAWORE PARTNERS LID	ļ					<u> </u>		JOB NO.	7102 10	0100	
CLIE	NT: Waikato Regional Cou	ncil 		LOCATIO	N: M	oanat	aiari, Th	names.				
	RT DATE: 26/10/2011 DATE: 26/10/2011	COORDINATES:	E1824988.56 N5887850.26	TOTAL D	EPTH:	1.5	m	LOGGE	BY: C	SF	SHEET 1	OF 1
TOP	OUND LEVEL: OF CASING:			90					EL.	II	NSTALLATIO	N
INTERPRE- TATION	DESCRIPTION ((based on c			GRAPHIC LOG	DEPTH (m)	RL (m)	SAMPLES	TESTS	WATER LEVEL GAIN / LOSS			
	SILT with minor fine gravels; b	rown. Dry; friable	[TOPSOIL].		0.0	0	MOA014 ● 0.1					
	Gravelly SILT, brownish orange up to cobble sized andesitic g		riable contains		-							
FILL					_		MOA014					
	Clayey SILT with minor coarse light grey. Stiff; moist; modera		ange streaked		_		• 0.5					
	becomes gravelly				_							
	Silty CLAY, orange streaked gr plasticity. becomes sandy	ey. Stiff, moist, n	noderate		1.0 —	1	MOA014 1.0					
	becomes silty fine grained sa	and SAND; satura	ited.		_				<u>↓</u>			
	becomes brownish grey				-		● MOA014 1.5					
	END OF HAND ALICED AT 1 Ex											

END OF HAND AUGER AT 1.5m TARGET DEPTH

otes: 1. Groundwater was encountered at 1.2 m depth on 26/10/11

KEY

✓ Groundwater Level
✓ Water Gain
→ Water Loss
● Grab sample
X PID Reading (ppm)

Drilled By: CSF
Diameter: 50mm
Method: Hand Auger

Datum:

Filename: A02469100B014_MOA014

solutions for your environment

LOG OF HAND AUGER

HOLE NO. MOA015

P	ATTLE DELAMORE PARTNERS LTD	Moanatalan Subdiv	ISION 3	Site	mve	suga	uon	JOB NO:	A0246	9100	
CLIE	NT: Waikato Regional Cou	ncil	LOCATIO	N: M	oanat	aiari, Tr	names.				
STAI END	RT DATE: 26/10/2011 DATE: 26/10/2011	COORDINATES: E1824983.81 N5887976.58	TOTAL D	EPTH:	1.5	m	LOGGE	BY: C	SF	SHEET 1	OF 1
TOP	OUND LEVEL: OF CASING:)G					EL S	11	NSTALLATIO	N
INTERPRE- TATION		DF SOIL / ROCK cuttings etc.)	GRAPHIC LOG	DEPTH (m)	RL (m)	SAMPLES	TESTS	WATER LEVEL GAIN / LOSS			
	SILT with minor fine gravels; b	rown. Dry; friable [TOPSOIL].		0.0	0	_ MOA015					
	Silty coarse grained SAND mingrained gravels; brown mottle to wet; friable; gravels are subsections of the same subsections of the same subsections.	d orange and grey. Loose; moist		_		MOA015					
FILL	Silty CLAY; orange streaked w pumiceous sandbecomes silvery grey, some			1.0 —	1	MOA015		\ <u>\</u>			
	friable; some clay inclusions.	prownish grey. Loose, saturated;		-		MOA015 1.5					
	END OF HAND AUGER AT 1.5m TARGET DEPTH										

Notes: 1. Groundwater was encountered at 0.8 m depth on 26/10/11.

2. Coordinates have been recorded by high precision GPS and are presented in

KEY Groundwater Level
Water Gain → Water Loss Grab samplePID Reading (ppm)

Drilled By: Diameter: 50mm Method: Hand Auger

Datum:

Filename: A02469100B015_M0A015

pdp	solutions for your environment
DATTLE DELAMOR	E DADTNIEDS I TO

HOLE NO. MOAO16

P	ATTLE DELAMORE PARTNERS LTD	Moanata	iari Subdivi	sion S	Site	Inve	stiga	tion	JOB NO:	A0246	9100	
CLIE	NT: Waikato Regional Cour	ncil		LOCATIO	N: M	oanat	aiari, Tr	names.				
	RT DATE: 26/10/2011 DATE: 26/10/2011	COORDINATES:	E1824945.85 N5888062.52	TOTAL D	EPTH:	0.4	m	LOGGE	BY: G.	JS	SHEET 1	OF 1
	UND LEVEL: OF CASING:			GRAPHIC LOG					EL S	IN	ISTALLATIO	7
Interpre- Tation	DESCRIPTION OF SOIL / ROCK (based on cuttings etc.)				DEPTH (m)	RL (m)	SAMPLES	TESTS	WATER LEVEI GAIN / LOSS			
	SILT trace fine to medium san non-plastic [TOPSOIL].	d; brown. Firm to	stiff; moist;		0.0	0	● MOA016 0.1					
FILL		y SILT minor fine to coarse gravel; brown. very stiff; mois plastic; gravel is angular andesite. : Colour changes to orange.					MOA016 ● 0.5					
	END OF HAND ALIGED AT O 4.	DEFLICAT										

END OF HAND AUGER AT 0.4m REFUSAL

Notes: 1. Groundwater was not encountered on 26/10/2011.

3. Coordinates have been recorded by high precision GPS and are presented in

KEY Groundwater Level
Water Gain → Water Loss Grab sample PID Reading (ppm)

Drilled By: Diameter: 50mm Method: Hand Auger

Datum:

Filename: A02469100B016_M0A016

pdp Solutions for your environment

LOG OF HAND AUGER Moanataiari Subdivision Site Investigation

HOLE NO. MOA017

JOB NO: A02469100

	TITLE DELAWIORE PARTINERS LID		T					JOB NO.	7102 10	3100	
CLIE	NT: Waikato Regional Cou	ncil	LOCATIO	N: M	oanat	aıari, Th	names.				
STAR END	T DATE: 26/10/2011 DATE: 26/10/2011	COORDINATES: E1824905.66 N5888217.70	TOTAL D	EPTH:	1.5	m	LOGGE	D BY: G	JS	SHEET 1 (OF 1
TOP (JND LEVEL: DF CASING:		90					EL S	II	INSTALLATION	
INTERPRE- TATION		DF SOIL / ROCK cuttings etc.)	GRAPHIC LOG	DEPTH (m)	RL (m)	SAMPLES	TESTS	WATER LEVEL GAIN / LOSS			
FILL	SILT trace fine to medium san plasticity to non-plastic [TOPS] Fine to coarse SAND with trac Loosely packed; moist; gravel	e gravel and shell; brown.		0.0	0	● MOA017 0.1					
	subrounded.	e shell; brown. Loosely packed;		_		• MOA017 0.5					
9	Coarse SAND with some shell	s; brown. Loosely packed; moist.		_							
Marine Beach Sediments	Fine to medium SAND with tramoist.	ace shell; brown. Loosely packed;		1.0 —		MOA017 1.0		N = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =			
	END OF HAND AUGER AT 1.5r	m TARGET DEPTH	1	Ί			l				

: 1. Groundwater was encountered at 1.45 m depth on 26/10/2011.

2. Coordinates have been recorded by high precision GPS and are presented in NZTM.

KEY

✓ Groundwater Level

✓ Water Gain

→ Water Loss

• Grab sample

× PID Reading (ppm)

Drilled By:
Diameter: 50mm
Method: Hand Auger

Datum:

Filename: A02469100B017_MOA017

pdp Solutions for your environment
DATTLE DELAMADE DADTNEDO LEO

HOLE NO. MOA018

P	ATTLE DELAMORE PARTNERS LTD	Moanataiari Subdivi	sion S	Site	Inve	stiga	tion	JOB NO:	: A0246	9100	
CLIE	NT: Waikato Regional Cou	ncil	LOCATIO	N: M	oanat	aiari, Th	names.				
	RT DATE: 27/10/2011 DATE: 27/10/2011	COORDINATES: E1825013.92 N5888105.34	TOTAL D	EPTH:	0.7	m	LOGGE	BY: G	JS	SHEET 1	OF 1
	UND LEVEL: OF CASING:)G					EL	II	NSTALLATIO	V
INTERPRE- TATION	DESCRIPTION ((based on c		GRAPHIC LOG	DEPTH (m)	RL (m)	SAMPLES	TESTS	WATER LEVEL GAIN / LOSS			
		e sand and fine to coarse gravel;		0.0	0	● MOA018 0.1					
FILL	orangey brown. Stiff; moist; n angular andesite.	noderate plasticity; gravel is		_		MOA018					
	SILT some fine sand trace fine moist; low plasticity to non-pla	e gravel; brownish orange. Stiff; astic.		_		0.5 MOA018 1.0					
	END OF HAND ALICED AT 0.7-	DEFLICAL									

END OF HAND AUGER AT 0.7m REFUSAL

Notes: 1. No groundwater was encountered on 27/10/2011.

3. Coordinates have been recorded by high precision $\ensuremath{\mathsf{GPS}}$ and are presented in

KEY Groundwater Level
Water Gain → Water Loss Grab sample PID Reading (ppm)

Drilled By: Diameter: 50mm Method: Hand Auger

Datum:

Filename: A02469100B018_M0A018

solutions for your environment

LOG OF HAND AUGER

HOLE NO. MOA019

P.	ATTLE DELAMORE PARTNERS LTD	Moanatalari Subuly	ISION 3	Site	mve	suga	uon	JOB NO:	A0246	39100	
CLIE	NT: Waikato Regional Cou	ncil	LOCATIO	N: M	oanat	aiari, Th	names.				
STAF END	RT DATE: 27/10/2011 DATE: 27/10/2011	COORDINATES: E1825059.37 N5888027.46	TOTAL D	EPTH:	1.4	5m	LOGGEI	D BY: C	SF	SHEET 1 (OF 1
	UND LEVEL: OF CASING:		00					EL S	II	NSTALLATION	7
INTERPRE- TATION		OF SOIL / ROCK cuttings etc.)	GRAPHIC LOG	DEPTH (m)	RL (m)	SAMPLES	TESTS	WATER LEVEL GAIN / LOSS			
	SILT with minor fine gravels; b	orown. Dry; friable [TOPSOIL].		- -	0	MOA019 0.1					
FILL	Sandy SILT with trace clay; ye Stiff; low pasticity, minor fine	ellowish white streaked orange. grained andesite gravels.		-		● MOA019 0.5					
	speckled white. Loose; moist;			1.0 —	- -1	MOA019 1.0					
	becomes yellowish brown sp										
	wet; low pasticity.	n minor silt; brownish red. Soft;									
	becomes wet/saturated.					●MOA019 1.5					
	END OF HAND AUGER AT 1.4	5m REFUSAL									

Notes: 1. Groundwater was not encountered on 27/10/11.

2. Refusal at 1.45 m.

3. Coordinates have been recorded by high precision $\ensuremath{\mathsf{GPS}}$ and are presented in

KEY Groundwater Level
Water Gain → Water Loss Grab samplePID Reading (ppm)

Drilled By: Diameter: 50mm Method: Hand Auger

Datum:

Filename: A02469100B019_M0A019

HOLE NO. MOAO2O

P.	ATTLE DELAMORE	PARTNERS LTD	woanata	ıları Subdiv	ision s	site	inve	stiga	tion	JOB NO:	A0246	9100	
CLIE	NT: Waika	to Regional Cou	ncil		LOCATIO	N: M	loanat	aiari, Th	names.				
	RT DATE: 27 DATE: 27	7/10/2011 7/10/2011	COORDINATES:	E1825099.80 N5887983.52	TOTAL D	EPTH:	1.1	m	LOGGE	BY: C	SF	SHEET 1	OF 1
TOP	UND LEVEL: OF CASING:)G					EL S	IN	NSTALLATIO	N
INTERPRE- TATION			OF SOIL / ROCK outtings etc.)		GRAPHIC LOG	(w) HIA30	RL (m)	SAMPLES	TESTS	WATER LEVEL GAIN / LOSS			
	SILT with mi	nor fine gravels; b	rown. Dry; friable	[TOPSOIL].		0.0	0	_ MOA020					
	Medium der	nined SAND with nase; moist; low pla	asticity.	ū		-		0.1 MOA020 0.5					
FILL		orown speckled bla orange red streake				_		0.5					
	Silty well gra	aded SAND; bluish friable; contains f	grey mixed light	greenish grey.		_							
	-	gravelly, light brow or angular quartz		kled white;		1.0 —	- -1	MOA020 ● 1.0		¥			
	Gravelly well saturated; fr	graded SAND; br	ownish orange. D	ense; wet to				1.0		-			

END OF HAND AUGER AT 1.1m REFUSAL

Notes: 1. Groundwater was encountered at 1.0 m depth on 27/10/11.

2. Refusal at 1.1 m.

3. Coordinates have been recorded by high precision GPS and are presented in

KEY Groundwater Level
Water Gain → Water Loss Grab samplePID Reading (ppm)

Drilled By: Diameter: 50mm Method: Hand Auger

Datum:

Filename: A02469100B020_M0A020

podo Solutions for your environment

LOG OF HAND AUGER Moanataiari Subdivision Site Investigation

HOLE NO. MOA021

P.	ATTLE DELAMORE PARTNERS LTD	Moanataiari Su	ıbdiv	ision S	Site	Inve	stiga	tion	JOB NO:	A0246	9100	
CLIE	NT: Waikato Regional Cour	ncil		LOCATIO	N: M	oanat	aiari, Th	names.				
	RT DATE: 27/10/2011 DATE: 27/10/2011	COORDINATES: E18251 N58879	53.03 30.59	TOTAL D	EPTH:	1.0	m	LOGGE	BY: GJ	S	SHEET 1	OF 1
TOP	UND LEVEL: OF CASING:)G					EL	II	NSTALLATION	٧
INTERPRE- TATION	DESCRIPTION C (based on co			GRAPHIC LOG	DEPTH (m)	RL (m)	SAMPLES	TESTS	WATER LEVEL GAIN / LOSS			
	Gravelly SILT; brown. Hard; dry coarse.	; non-plastic; gravel is fine	to		0.0	0	MOA021					
,	Silty fine to coarse GRAVEL wit packed; dry.	h trace cobbles; orange. Ti	ghtly /				0.1					
	Fine GRAVEL; black. Tightly pa	cked; dry; coal ash.										
FILL	Gravelly SILT; orange mottled v gravel is fine to coarse pumice		etic;		-		MOA021 ● 0.5					
					-		0.0					
	Silty CLAY; brown. Stiff; moist;	moderately plastic.										
	Gravelly SILT; orange mottled of gravel is fine to coarse pumice		stic;		1.0	-1	●MOA021 1.0					
	END OF HAND AHOED AT 4 O				-							

END OF HAND AUGER AT 1.0m REFUSAL

Notes: 1. No groundwater was encountered on 27/10/2011.

2. Refusal at 1.0 m.

3. Coordinates have been recorded by high precision GPS and are presented in

 Drilled By:
Diameter: 50mm
Method: Hand Auger

Datum:

Filename: A02469100B021_M0A021

pop Solutions for your environment

LOG OF HAND AUGER

HOLE NO. MOA022

P/	ATTLE DELAMORE PARTNERS LTD	Moanatalari Subdiv	ISION 3	site	inve	stiga	tion	JOB NO:	A0246	9100
CLIE	NT: Waikato Regional Cour	ncil	LOCATIO	N: M	oanat	aiari, Tr	names.			
STAF END	RT DATE: 27/10/2011 DATE: 27/10/2011	COORDINATES: E1825087.65 N5887886.12	TOTAL D	EPTH:	1.5	m	LOGGE	BY: G.	JS	SHEET 1 OF 1
TOP	UND LEVEL: OF CASING:)G					EL S	II	NSTALLATION
INTERPRE- TATION	DESCRIPTION C (based on c		GRAPHIC LOG	DEPTH (m)	RL (m)	SAMPLES	TESTS	WATER LEVEL GAIN / LOSS		
FILL	Stiff; moist; moderate plasticit	fine to coarse gravel; orangey ist; moderate plasticity; white silt ;; non-plastic; sand is fine;		0.0	0	MOA022 0.1 MOA022 0.5 MOA022 1.0	11.	/S / N		
	END OF HAND AUGER AT 1.5n	n Target Depth	<u> </u>			● MOA022 1.5				

Notes: 1. No groundwater was encountered on 27/10/2011.

2. Coordinates have been recorded by high precision GPS and are presented in

KEY Groundwater Level
Water Gain → Water Loss Grab samplePID Reading (ppm)

Drilled By: Diameter: 50mm Method: Hand Auger

Datum:

Filename: A02469100B022_M0A022

pdp Soutions for your environment

LOG OF HAND AUGER Moanataiari Subdivision Site Investigation

HOLE NO. MOA023

P.	ATTLE DELAMORE PARTNERS LTD	Moanataiari Subdiv	ision (Site	Inve	stiga	tion	JOB NO	: A0246	69100	
CLIE	NT: Waikato Regional Cou	ncil	LOCATIO	N: N	loanat	aiari, Th	names.				
	RT DATE: 27/10/2011 DATE: 27/10/2011	COORDINATES: E1825176.16 N5887827.55	TOTAL D	EPTH:	1.5	m	LOGGEI	D BY: G	JS	SHEET 1	OF 1
TOP	UND LEVEL: OF CASING:		.06					ÆL S	1	NSTALLATIOI	N
INTERPRE- TATION		DF SOIL / ROCK uttings etc.)	GRAPHIC LOG	DEРТН (m)	RL (m)	SAMPLES	TESTS	WATER LEVEL GAIN / LOSS			
	SILT; brown. Stiff; dry; non-pla	astic [TOPSOIL].		0.0	0	MOA023					
		to coarse gravel; greyish brown. ces of rusted metal encountered.		_		• 0.1					
	SILT with minor clay and fine to with orange and green mottles	to coarse gravel; orangey brown s. Stiff; moist; low plasticity.		_		MOA023 0.5					
FILL	SILT some fine to medium gra	vel and minor clay: reddish		_							
	brown. Stiff; moist; low plastic			1.0 —	1	● MOA023 1.0					
	SILT with minor fine to mediur moist; low plasticity.	n sand; brownish orange. Stiff;		_							
•	brown. Stiff; moist; moderate			_							
	1.4m: Colour dark orange. Lov	v plasticity.				●MOA023 1.5					
	END OF HAND AUGER AT 1.5r	n Target Depth									

Notes: 1. Groundwater was not encountered on 27/10/2011.

2. Coordinates have been recorded by high precision GPS and are presented in N7TM.

KEY

✓ Groundwater Level

✓ Water Gain

→ Water Loss

• Grab sample

× PID Reading (ppm)

Drilled By:
Diameter: 50mm
Method: Hand Auger

Datum:

Filename: A02469100B023_M0A023

pop Solutions for your environment

LOG OF HAND AUGER

HOLE NO. MOAO24

P.	ATTLE DELAMORE PARTNERS LTD	Moanatalari Subdiv	ision :	Site	inve	stiga	tion	JOB NO:	: A0246	69100	
CLIE	NT: Waikato Regional Cou	ncil	LOCATIO	DN: N	loanat	aiari, Th	names.				
STAF END	RT DATE: 27/10/2011 DATE: 27/10/2011	COORDINATES: E1825141.18 N5887769.68	TOTAL D	EPTH:	1.5	m	LOGGE	O BY: G	JS	SHEET 1	OF 1
	UND LEVEL: OF CASING:							EL	II	NSTALLATIO!	N
INTERPRE- TATION		DF SOIL / ROCK cuttings etc.)	GRAPHIC LOG	DEPTH (m)	RL (m)	SAMPLES	TESTS	WATER LEVEL GAIN / LOSS			
FILL	Fine to medium SAND minor mottles. Loosely packed; moist SILT; light orange with light brimoist; non-plastic. 1.3m: Low plasticity to non-plastic Silty medium to coarse GRAVI moist.	to medium sand; orange. Firm silt; greyish brown with black st. ownish yellow mottles. Stiff; astic. EL; orange mottled grey. Loose;		0.0	0	MOA024 MOA024 MOA024 MOA024		(5) (A)			
	SILT; light orange with light br moist; non-plastic.	ownish yellow mottles. Stiff;				MOA024 1.5					
	END OF HAND AUGER AT 1.5r	n TARGET DEPTH									

Notes: 1. No groundwater was encountered on 27/10/2011.

2. Coordinates have been recorded by high precision GPS and are presented in

KEY Groundwater Level
Water Gain → Water Loss Grab samplePID Reading (ppm)

Drilled By: Diameter: 50mm Method: Hand Auger

Datum:

Filename: A02469100B024_M0A024

pop Solutions for your environment

LOG OF HAND AUGER

HOLE NO. MOA025

P	ATTLE DELAMORE PARTNERS LTD	Moanata	ıarı Subdivi	sion s	site	inve	stiga	tion	JOB NO:	A0246	9100	
CLIE	NT: Waikato Regional Cou	ncil		LOCATIO	N: M	oanat	aiari, Th	names.				
	RT DATE: 27/10/2011 DATE: 27/10/2011	COORDINATES:	E1825128.35 N5887672.89	TOTAL D	EPTH:	1.3	m	LOGGE	BY: CS	SF	SHEET 1	OF 1
TOP	UND LEVEL: OF CASING:			0G					ÆL S	IN	NSTALLATIO	٧
INTERPRE- TATION		OF SOIL / ROCK cuttings etc.)		GRAPHIC LOG	DEPTH (m)	RL (m)	SAMPLES	TESTS	WATER LEVEL GAIN / LOSS			
	SILT with minor fine gravels; b	rown. Dry; friable	[TOPSOIL].		0.0	0	_ MOA025					
FILL	Fine to coarse grained Sandy moist; friable.	SILT; brownish ora	ange. Stiff;		_		● 0.1 MOA025 0.5					
	becomes clayey, dark brown	specked orange.	Low plasticity.		1.0 —	1	MOA025 1.0					
	Silty CLAY minor SAND dark b grey. Stiff; moist; moderate pl		ange and light		-		1.0					
	contains course sand fragme	ents, reddish oran	ıge.		_		● MOA025 1.3					
	END OF HAND AUGER AT 1.3r	n REFUSAL										

Notes: 1. Groundwater was not encountered on 27/10/11 $2. \ \mbox{Coordinates}$ have been recorded by high precision GPS and are presented in **KEY** Groundwater Level
Water Gain → Water Loss Grab samplePID Reading (ppm)

Drilled By: Diameter: 50mm Method: Hand Auger

Datum:

Filename: A02469100B025_MOA025

pop Solutions for your environment	
DATTLE DELAMODE DADTNEDO LTD	

LOG OF HAND AUGER Moanataiari Subdivision Site Investigation

HOLE NO. MOA026

Р	ATTLE DELAMORE PARTNERS LTD IVIOAIIALAIAII SUN			iaii Subuivi	SIUII S)ILC	IIIVE	Suga	uon	JOB NO:	A0246	9100	
CLIE	LIENT: Waikato Regional Council				LOCATIO	N: M	oanat	aiari, Th	names.				
	D DATE: 28/10/2011 COOKDINATES N5887665.			E1825043.29 N5887665.44			PTH: 0.1m		LOGGE	BY: G	JS	SHEET 1 C)F 1
	GROUND LEVEL: OP OF CASING:			LOG					EL S	IN	ISTALLATION	I	
INTERPRE- TATION	DESCRIPTION OF SOIL / ROCK (based on cuttings etc.)				GRAPHIC LO	DEPTH (m)	RL (m)	SAMPLES	TESTS	WATER LEVEL GAIN / LOSS			
FILL	Gravelly	SILT; brown. Tightly pa	acked; dry; non-p	lastic.		0.0	0	● MOA026 0.1					

END OF HAND AUGER AT 0.1m REFUSAL

Notes: 1. Groundwater was not encountered on 28/10/2011.

2. Refusal at 0.1m.

3. Located nearby foundry and railway tracks.

4. Coordinates have been recorded by high precision GPS and are presented in

KEY Groundwater Level
Water Gain → Water Loss Grab sample PID Reading (ppm)

Drilled By: Diameter: 50mm Method: Hand Auger Datum:

Filename: A02469100B026_M0A026

Logs based on New Zealand Geotechnical Society Field Description of Soil and Rock Guidelines (2005)

pdp !	olutions for your environment
DATTLE DELAMODE I	DADTNIEDO LEO

HOLE NO. MOAO27

P/	ATTLE DELAMORE PARTNERS LTD	Moanatai	ari Subdivi	sion S	Site	Inve	stiga	tion	JOB NO:	A0246	9100	
CLIE	NT: Waikato Regional Cour	ncil		LOCATIO	N: M	oanat	aiari, Th	names.				
	RT DATE: 28/10/2011 DATE: 28/10/2011	COORDINATES:	E1824899.13 N5887784.27	TOTAL D	EPTH:	1.0	m	LOGGE	BY: G	IS	SHEET 1 (OF 1
	UND LEVEL: OF CASING:)G					EL S	II	NSTALLATION	N
INTERPRE- TATION	DESCRIPTION C (based on c			GRAPHIC LOG	DEPTH (m)	RL (m)	SAMPLES	TESTS	WATER LEVEL GAIN / LOSS			
1291	Organic SILT; black. Soft; dry; fibrous.	non-plastic; organi	ic material		0.0	0	MOA027					
GARDEN FILL	SILT; brown. Firm; moist; non-	plastic.			-		• 0.1					
	Clayey SILT minor fine to coars gravel; brownish orange. Stiff;				_		● MOA027 ● 0.5					
FILL	Sandy SILT with minor fine to white. Stiff; moist; low to mod				-							
	Sandy SILT minor clay; greyish plastic.	brown. Stiff; mois	st; moderately		1.0	-1	●MOA027 1.0					

END OF HAND AUGER AT 1.0m REFUSAL

Notes: 1. Groundwater was not encountered on 28/10/2011.

2. Refusal at 1.0m.

3. Hand Auger drilled through Moanataiari School Garden.

4. Coordinates have been recorded by high precision GPS and are presented in

KEY Groundwater Level
Water Gain → Water Loss Grab sample PID Reading (ppm)

Drilled By: Diameter: 50mm Method: Hand Auger

Datum:

Filename: A02469100B027_MOA027

pdp Solutions for your environment
DATTLE DELAMADE DADTNEDO LEO

HOLE NO. MOA028

P	ATTLE DELAMORE PARTNERS LTD	Moanatalari Subulvi	SIOII 3	oite	iiive	Suga	uon	JOB NO:	A0246	9100	
CLIE	NT: Waikato Regional Cour	ncil	LOCATIO	N: M	oanat	aiari, Tr	names.				
	RT DATE: 28/10/2011 DATE: 28/10/2011	COORDINATES: E1824902.89 N5887771.97	TOTAL D	EPTH:	0.7	m	LOGGE	BY: C	SF	SHEET 1	OF 1
	UND LEVEL: OF CASING:)G					EL .	II	NSTALLATIO	V
INTERPRE- TATION	DESCRIPTION C (based on co	•	GRAPHIC LOG	DEPTH (m)	RL (m)	SAMPLES	TESTS	WATER LEVEL GAIN / LOSS			
	SILT with minor fine gravels; but	rown. Dry; friable [TOPSOIL].		0.0	0	MOA028 0.1					
FILL	well graded sandy SILT minor of white. Stiff; moist; low plasticitcontains black coloured fine										
	becomes brown, moistbecomes brownish orange sp	peckled white.				● MOA028 0.5					
	Clayey SILT with minor sand, refirm; mosit; low pasticity; cont	tains fine gravels.		-		● MOA028 1.0					

1. Groundwater was not encountered on 28/10/11.

2. Borehole located in the proposed school garden as indicated by the Moanataiari School Principal (David Brock).

3. Coordinates have been recorded by high precision GPS and are presented in NZTM.

KEY Groundwater Level
Water Gain → Water Loss Grab sample PID Reading (ppm)

Drilled By: Diameter: 50mm Method: Hand Auger

Datum:

Filename: A02469100B028_M0A028

Appendix CTables

Table C1 Laboratory	Analysis of Soil	Samples Taker	n at Selected L	ocations and D	epths at Moana	ataiari, Thames	(mg/kg dry weig	(ht) for metal co	oncentrations										
Sample Location	MOA001 0.1	MOA001 0.5	MOA001 1.0	MOA002 0.1	MOA002 0.5	MOA003 0.1	MOA003 0.5	MOA003 1.0	MOA004 0.1	MOA004 0.5	MOA004 1.0	MOA005 0.1	MOA005 0.5	MOA005 1.5	MOA006 0.1	MOA006 0.5	Huma	n Health	
Lab Number	947724.1	947724.2	947724.3	947724.5	947724.6	947721.11	947721.12	947721.13	947142.1	947142.2	947142.3	947721.7	647721.8	947721.10	947724.8	947724.9	Risk-based Values		
Sample Depth (m)	0.1	0.5	1.0	0.1	0.5	0.1	0.5	1.0	0.1	0.5	1.0	0.1	0.5	1.5	0.1	0.5	Residential ¹	Recreational ²	Background ⁶
Antimony	0.7	1.7	6.7	7.5	1.7	1.6	1.1	3.1	2.7	15.6	20	3.1	6.8	18.0	3.3	2.1	31 ³	NGV ⁸	0.02-0.17 (0.076)
Arsenic	24	96	185	65	54	30	41	66	45	17	40	75	128	290	39	58	20	80	1.0-25 (5.1)
Cadmium	0.18	< 0.10	< 0.10	0.12	< 0.10	0.26	< 0.10	< 0.10	0.26	< 0.10	0.38	0.17	< 0.10	0.40	0.36	< 0.10	3	400	0.03-0.3 (0.11)
Chromium	48	7	9	8	8	17	5	9	21	6	11	18	11	25	12	9	460 ⁴	2700	1-150 (18)
Copper	32	35	48	22	26	34	22	53	40	9	52	35	38	83	30	24	NL	NL	4-55 (16)
Lead	33	9.9	6.9	32	13.8	91	10.9	9.1	99	23	64	65	28	189	35	7.0	210	880	3-32 (11)
Mercury	0.33	0.49	2.2	0.39	0.36	0.28	0.41	0.17	1.23	0.87	0.49	1.28	1.02	3.7	0.63	0.51	310	1800	0.019-0.5 (0.19)
Zinc	84	25	27	53	46	153	12	12	180	21	185	153	105	210	99	15	7000 ⁵	NGV ⁸	11-58 (28)

Table C1 Laboratory	Analysis of Soil	Samples Take	n at Selected L	ocations and D	epths at Moana	taiari, Thames	(mg/kg dry weig	(ht) for metal co	ncentrations										
Sample Location	MOA006 1.0	MOA007 0.1	MOA007 0.5	MOA007 1.0	MOA008 0.1	MOA008 0.5	MOA009 0.1	MOA009 0.5	MOA010 0.1	MOA 010 0.5	MOA010 1.0	MOA011 0.1	MOA011 0.5	MOA012 0.1	MOA012 0.5	MOA013 0.1	Huma	n Health	
Lab Number	947724.10	947721.1	947721.2	947721.3	947915.13	947915.14	947142.4	947142.5	947142.7	947142.8	947142.9	947724.11	947724.12	947724.17	947724.16	947915.1	Risk-base	ed Values	
Sample Depth (m)	1.0	0.1	0.5	1.0	0.1	0.5	0.1	0.5	0.1	0.5	1.0	0.1	0.5	0.1	0.5	0.1	Residential ¹	Recreational ²	Background ⁶
Antimony	1.7	0.6	3.0	4.0	5.2	8.5	1.4	2.5	1.7	1.8	2.4	1.2	1.2	1.6	2.7	5.2	31 ³	NGV ⁸	0.02-0.17 (0.076)
Arsenic	37	24	166	139	51	156	21	37	62	42	93	25	31	35	86	57	20	80	1.0-25 (5.1)
Cadmium	< 0.10	0.21	< 0.10	0.18	0.14	< 0.10	0.18	0.15	0.40	< 0.10	< 0.10	0.34	0.31	< 0.10	0.25	< 0.10	3	400	0.03-0.3 (0.11)
Chromium	6	15	28	15	11	7	13	20	14	6	15	15	15	14	12	10	460 ⁴	2700	1-150 (18)
Copper	16	25	37	34	21	34	26	25	55	59	32	36	132	38	92	26	NL	NL	4-55 (16)
Lead	5.2	51	18.0	36	32	24	41	21	66	7.6	8.8	42	30	35	119	37	210	880	3-32 (11)
Mercury	0.82	0.40	1.14	0.57	0.48	1.37	0.68	1.68	0.70	0.90	0.99	0.64	0.26	0.57	3.8	1.11	310	1800	0.019-0.5 (0.19)
Thallium	nt	nt	1.4	nt	nt	1.1	nt	nt	nt	1.5	nt	nt	nt	nt	nt	nt	0.78 ³	NGV ⁸	0.057-0.6 (0.22)
Zinc	7	115	38	117	79	85	100	71	146	16	19	99	70	90	161	64	7000 ⁵	NGV ⁸	11-58 (28)

Sample Location	MOA013 0.5	MOA013 1.0	MOA014 0.1	MOA014 0.5	MOA014 1.0	MOA 015 0.1	MOA 015 0.5	MOA 015 1.0	MOA016 0.1	MOA016 0.5	MOA017 0.1	MOA017 0.5	M0A018 0.1	MOA018 0.5	MOA018 1.0	MOA019 0.1	Huma	n Health	
Lab Number	947915.2	947915.3	947769.1	947769.2	947769.3	947142.11	947142.12	947142.13	947769.5	947769.6	947769.7	947769.8	947769.11	947769.12	947769.13	947769.14	Risk-base	ed Values	
Sample Depth (m)	0.5	1.0	0.1	0.5	1.0	0.1	0.5	1.0	0.1	0.5	0.1	0.5	0.1	0.5	1.0	0.1	Residential ¹	Recreational ²	Background ⁶
Antimony	4.4	9.0	4.0	2.6	2.3	27	37	35	4.6	0.7	2.1	0.9	12.8	14.1	19.0	7.3	31 ³	NGV ⁸	0.02-0.17 (0.076)
Arsenic	118	230	88	101	111	350	680	1,020	187	550	50	55	250	560	600	151	20	80	1.0-25 (5.1)
Cadmium	0.13	0.25	< 0.10	0.15	< 0.10	0.2	0.25	0.32	0.22	< 0.10	0.30	0.10	0.54	0.39	< 0.10	0.74	3	400	0.03-0.3 (0.11)
Chromium	10	14	8	10	9	8	13	6	13	21	12	12	15	8	7	15	460 ⁴	2700	1-150 (18)
Copper	40	200	28	42	39	43	147	97	49	36	31	29	73	56	33	54	NL	NL	4-55 (16)
Lead	40	182	35	52	18.9	106	156	123	82	8.8	58	71	140	139	123	220	210	880	3-32 (11)
Mercury	2.3	5.0	1.28	2.9	1.98	27	43	78	3.9	1.18	1.10	0.60	10.4	16.7	29	11.5	310	1800	0.019-0.5 (0.19)
Thallium	nt	1.1	nt	nt	nt	2.7	7.5	5.4	1.2	nt	nt	nt	1.9	3.2	6.2	1.3	0.78 ³	NGV ⁸	0.057-0.6 (0.22)
Zinc	68	130	68	74	28	101	220	132	148	44	124	189	162	134	58	250	7000 ⁵	NGV ⁸	11-58 (28)

Table C1 Laboratory	Analysis of Soil	Samples Take	n at Selected Lo	ocations and De	epths at Moana	taiari, Thames	(mg/kg dry weig	(ht) for metal co	oncentrations										
Sample Location	MOA019 0.5	MOA019 1.0	MOA020 0.1	MOA020 0.5	MOA020 1.0	MOA021 0.1	MOA021 0.5	MOA021 1.0	MOA022 0.1	MOA022 0.5	MOA022 1.5	M0A023 0.1	MOA023 0.5	MOA024 0.1	MOA024 0.5	MOA024 1.0	Huma	ın Health	
Lab Number	947769.15	947769.16	947769.18	947769.19	947769.20	947724.13	947724.14	947724.15	947721.4	947721.5	947721.16	947915.5	947915.6	947769.21	947769.22	947769.23	Risk-base	ed Values	
Sample Depth (m)	0.5	1.0	0.1	0.5	1.0	0.1	0.5	1.0	0.1	0.5	1.5	0.1	0.5	0.1	0.5	1.0	Residential ¹	Recreational ²	Background ⁶
Antimony	19.5	16.6	18.1	27	7.0	5.4	7.2	9.4	9.1	11.9	45	9.7	10.3	4.8	0.5	23	31 ³	NGV ⁸	0.02-0.17 (0.076)
Arsenic	460	4,700	320	1,450	550	87	210	270	113	200	920	119	410	46	18	500	20	80	1.0-25 (5.1)
Cadmium	0.72	0.31	0.16	< 0.10	0.16	0.17	< 0.10	< 0.10	0.39	0.31	2.8	0.40	0.24	0.18	< 0.10	0.16	3	400	0.03-0.3 (0.11)
Chromium	10	7	8	7	12	20	10	7	12	9	< 2	12	10	12	10	7	460 ⁴	2700	1-150 (18)
Copper	130	42	28	31	51	62	152	59	44	66	360	47	56	37	43	41	NL	NL	4-55 (16)
Lead	850	68	117	250	42	81	68	83	106	350	177	166	113	129	11.6	157	210	880	3-32 (11)
Mercury	24	43	13.2	29	8.4	0.92	1.39	6.3	2.5	5.2	24	1.31	13.9	1.98	0.11	132	310	1800	0.019-0.5 (0.19)
Thallium	3.9	5.0	2.0	5.0	2.0	nt	nt	1.9	nt	1.6	5.7	nt	2.2	nt	nt	2.8	0.78 ³	NGV ⁸	0.057-0.6 (0.22)
Zinc	260	83	76	62	155	138	59	37	172	150	450	240	160	102	27	57	7000 ⁵	NGV ⁸	11-58 (28)

Sample Location	MOA025 0.1	MOA025 0.5	MOA026 0.1	MOA027 0.1	MOA027 0.5	MOA028 0.1	MOA028 0.5	MOA028 1.0	Human	Health	
Lab Number	947915.9	947915.10	947721.17	947878.1	947878.2	947878.4	947878.5	947878.6	Risk-base	d Values	
Sample Depth (m)	0.1	0.5	0.1	0.1	0.5	0.1	0.5	1.0	Residential ¹ Recreational ²		Background ⁶
Antimony	10.7	2.6	10.1	2.5	2.7	1.2	1.3	1.3	31 ³	NGV ⁸	0.02-0.17 (0.076)
Arsenic	132	114	135	40	88	24	53	25	20	80	1.0-25 (5.1)
Cadmium	< 0.10	< 0.10	0.23	0.52	0.3	0.24	0.14	0.27	3	400	0.03-0.3 (0.11)
Chromium	9	8	14	19	16	15	11	17	460 ⁴	2700	1-150 (18)
Copper	36	34	137	47	55	33	40	32	NL	NL	4-55 (16)
Lead	103	40	121	113	200	46	46	45	210	880	3-32 (11)
Mercury	3.1	1.92	4.8	0.43	1.56	0.46	0.82	0.46	310	1800	0.019-0.5 (0.19)
Thallium	1.2	nt	1.1	nt	nt	nt	1.1	nt	0.78 ³	NGV ⁸	0.057-0.6 (0.22)
Zinc	61	25	183	610	154	98	56	108	7000 ⁵	NGV ⁸	11-58 (28)

- Soil Contaminants Standard for residential areas assuming 10% produce consumption, unless otherwise stated.
 Soil Contaminants Standard for recreational areas
 EPA Regional Screening Level (RSL) Resident Soils Table June 2011

- Guideline 1 values for Chromium VI
 Schedule B (7a) Guideline of Health-Based Investigation Levels National Environmental Protection (Assessment of Site Contamination) Measure 1999
 MFE Identifying, investigating and managing Risks Associated with Former Sheep-dip sites 2006, Table 4: Soil guideline for Human Health
 nt Not tested

- 8. No guideline value (NGV)

 NL = No Limit. No concentration of copper encountered in soils is likely to cause adverse human health effects.

 Sample Exceeds NES 10% Residential guideline value

 Sample Exceeds NES Recreational guideline value

 Sample Exceeds EPA Regional Screening Level (RSL) Resident Soils Table June 2011

 Sample Exceeds MFE Sheep-dip site guideline value

Table C2 Extensive Metals Suite Laboratory Analysis	of Soil Samples	-			,	· • • •	,							
		MOA 015 0.1	MOA 015 0.5	MOA 015 1.0	MOA016 0.1	MOA018 0.1	MOA019 0.1	MOA019 1.0	MOA020 0.1	MOA020 0.5	MOA022 1.5		ın Health	
												Risk-ba	sed Values	
		947142.17	947142.12	947142.13	947769.25	947769.26	947769.28	947769.16	947769.27	947769.19	947721.16	Residential ¹	Recreational ²	Background ⁶
Metals extensive suite, screen level (32 metals)														
Total Recoverable Aluminium	mg/kg dry wt	5,600	5,900	2,600	12,300	16,300	13,600	1,800	6,700	3,300	1,480	-	=	4,700-70,000 (25,600)
Total Recoverable Antimony	mg/kg dry wt	29	37	35	5.2	14.4	10.9	16.6	23	27	45	31 ³	NGV ⁷	0.02-0.17 (0.076)
Total Recoverable Arsenic	mg/kg dry wt	330	680	1,020	191	220	230	4,700	380	1,450	920	20	80	1.0-25 (5.1)
Total Recoverable Barium	mg/kg dry wt	260	240	183	82	220	191	158	149	260	210	=	-	15-310 (97)
Total Recoverable Bismuth	mg/kg dry wt	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	1	3.2	< 0.4	-	-	0.059-0.40 (0.18)
Total Recoverable Boron	mg/kg dry wt	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	-	-	1.0-8.5 (2.9)
Total Recoverable Cadmium	mg/kg dry wt	0.18	0.25	0.32	0.30	0.49	0.64	0.31	0.2	< 0.10	2.8	3	400	0.03-0.3 (0.11)
Total Recoverable Caesium	mg/kg dry wt	2.0	3.1	7.2	2.3	1.9	1.6	3.8	3	4.4	5.8	=	=	0.3-5.3 (1.6)
Total Recoverable Calcium	mg/kg dry wt	2,800	2,200	970	5,700	4,300	6,000	1,240	2,700	2,100	280	-	-	720-14,700 (4,530)
Total Recoverable Chromium	mg/kg dry wt	10	13	6	14	14	13	7	12	7	< 2	460 ⁴	2,700	1-150 (18)
Total Recoverable Cobalt	mg/kg dry wt	4.3	5.4	5.0	9.6	10.0	9.8	0.5	5.9	3.3	7.4	-	-	0.9-28 (5.9)
Total Recoverable Copper	mg/kg dry wt	49	147	97	52	78	73	42	32	31	360	NL	NL	4-55 (16)
Total Recoverable Iron	mg/kg dry wt	31,000	52,000	59,000	42,000	35,000	32,000	35,000	31,000	47,000	28,000	-	-	4,700-76,00 (25,600)
Total Recoverable Lanthanum	mg/kg dry wt	4.5	6.9	2.6	9.1	16.3	7.4	6.5	5.1	3.3	2.3	-	-	2-65 (11)
Total Recoverable Lead	mg/kg dry wt	112	156	123	78	156	240	68	131	250	177	210	880	3-32 (11)
Total Recoverable Lithium	mg/kg dry wt	3.5	3.8	0.6	7.3	6.8	5.0	0.4	3.1	1.8	< 0.4	-	-	0.6-9.4 (3.9)
Total Recoverable Magnesium	mg/kg dry wt	1,070	650	158	1,800	1,550	2,300	128	1,230	570	76	-	-	140-2010 (760)
Total Recoverable Manganese	mg/kg dry wt	195	155	44	540	1,160	620	22	310	104	33	-	-	50-2960 (780)
Total Recoverable Mercury	mg/kg dry wt	26	43	78	3.9	10.6	12.3	43	15.0	29	24	310	1,800	0.019-0.50
Total Recoverable Molybdenum	mg/kg dry wt	4.6	5.2	12.6	1.1	2.6	2.3	4.9	6.2	9.4	17	-	-	0.23-1.80 (0.76)
Total Recoverable Nickel	mg/kg dry wt	3	6	4	7	7	6	< 2	5	3	4	-	-	0.56-21 (3.9)
Total Recoverable Phosphorus	mg/kg dry wt	380	350	410	440	1,000	530	153	490	410	56	=	=	15-310 (350)
Total Recoverable Potassium	mg/kg dry wt	570	560	690	1,140	850	820	1,190	1,080	870	790	-	-	170-1300 (490)
Total Recoverable Rubidium	mg/kg dry wt	5.8	5.2	6.5	8.9	7.2	7.6	5.5	6.6	5.9	5.7	-	-	1.1-22 (7.6)
Total Recoverable Selenium	mg/kg dry wt	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	-	-	-
Total Recoverable Sodium	mg/kg dry wt	150	193	42	470	260	360	199	260	210	< 40	-	-	90-280 (160)
Total Recoverable Strontium	mg/kg dry wt	23	41	12.6	38	31	40	13.2	21	31	4.0	-	-	5-57 (19)
Total Recoverable Thallium	mg/kg dry wt	2.5	7.5	5.4	1.1	1.9	1.8	5.0	2.4	5.0	5.7	0.78 ³	NGV ⁷	0.057-0.6 (0.22)
Total Recoverable Tin	mg/kg dry wt	4.4	46	3.4	1.2	4.2	6.6	1.5	3.5	9.1	< 1.0	-	-	0.38-2.6 (1.14)
Total Recoverable Uranium	mg/kg dry wt	0.15	0.24	< 0.10	0.29	0.69	0.33	< 0.10	0.14	< 0.10	< 0.10	-	-	0.19-2.5 (0.79)
Total Recoverable Vanadium	mg/kg dry wt	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	-	-	5-300 (68)
Total Recoverable Zinc	mg/kg dry wt	111	220	132	168	173	260	83	94	62	450	7,000 ⁵	NGV ⁷	11-58 (28)

- 1. Soil Contaminants Standard for residential areas assuming 10% produce consumption, unless otherwise stated.
- 2. Soil Contaminants Standard for recreational areas
- 3. EPA Regional Screening Level (RSL) Resident Soils Table June 2011
- 4. Guideline1 values for Chromium VI
- 5. Schedule B (7a) Guideline of Health-Based Investigation Levels National Environmental Protection (Assessment of Site Contamination) Measure 1999
- 6. Taylor, M. D. & Kim, N. D. (2009) Dealumination as a mechanism for increased acid recoverable Al in Waikato mineral soils. Australian Journal of Soil Research, 47, pp 828-838. values given as range and average (in brackets)
- 7. No Guidline Value (NGV)
- NL = No Limit. No concentration of copper encountered in soils is likely to cause adverse human health effects.

Sample Exceeds NES Soil Contamination Standard (SCS) for Human Health -10% Residential guideline value
Sample Exceeds NES Soil Contamination Standard (SCS) for Human Health - Recreational guideline value
Sample Exceeds EPA Regional Screening Level (RSL) Resident Soils Table June 2011

Table C3: Soil Sample Res	ults - TPH, PAH - /	ALL PATHWAYS														
Soil Samples Collected at	a Depth of <1 m E	Below Ground Lev	/el ¹													
Sample Name	MOA002 0.1	MOA002 0.5	MOA 004 0.5	MOA005 0.5	MOA007 0.1	MOA007 0.5	MOA011 0.5	MOA012 0.5	MOA014 0.1	MOA014 0.5	MOA016 0.1	MOA016 0.5	MOA021 0.1	MOA021 0.5	MOA026 0.1	Tier 1 Soil Acceptance Criteria ^{2,3}
Laboratory Reference	947724.5	947724.6	947142.2	947721.8	947721.1	947721.2	947724.12	947724.16	947769.1	947769.2	947769.5	947769.6	947724.13	947724.14	947721.17	Residential Land Use
Sample Location	MOA002	MOA002	MOA004	MOA005	MOA007	MOA007	MOA011	MOA012	MOA014	MOA014	MOA016	MOA016	MOA021	MOA021	M0A026	ALL PATHWAYS
Soil Fate	Remaining	Remaining	Remaining	Remaining	Remaining	Remaining	Remaining	Remaining	Remaining	Remaining	Remaining	Remaining	Remaining	Remaining	Remaining	
Soil Type - Field													Sand	Sand		Sand
Soil Type - MfE (1999)													Sand	Sand		
Sample Depth (m bgl)	0.1	0.5	0.5	0.5	0.1	0.5	0.5	0.5	0.1	0.5	0.1	0.5	0.1	0.5	0.1	<1 m
C ₇ -C ₉ hydrocarbons	< 10	< 9	< 8	< 8	< 9	< 10	< 8	< 9	< 11	< 10	< 9	< 8	< 9	-	< 8	120 ^m
C ₁₀ -C ₁₄ hydrocarbons	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 30	< 20	< 20	< 20	< 20	-	< 20	(470) ^{6,x}
C ₁₅ -C ₃₆ hydrocarbons	< 40	< 40	< 40	< 40	< 40	< 40	< 40	< 40	< 50	< 40	< 40	< 40	68	-	57	NA ⁴
TPH	< 70	< 70	< 70	< 70	< 70	< 70	< 70	< 70	< 80	< 70	< 70	< 70	< 70	-	< 70	-
Naphthalene	-	-	-	-	-	-	-	-	-	-	-	-	< 0.14	< 0.14	-	58 ^v
Non-carc. (Pyrene)	-	-	-	-	-	-	-	-	-	-	-	-	0.69	1	-	(1,600) ^{6,p}
Benzo(a)pyrene eq. ⁷	-	-	-	-	-	-	-	-	-	-	-	-	0.52	0.86	-	10 ^{p, 8}
Soil Samples Collected a	at a Depth of 1 -	4 m Below Gro	ound Level ¹													
Sample Name	MOA 004 1.0	MOA005 1.5	MOA007 1.0	MOA014 1.0	MOA021 1.0	MOA022 1.0										Tier 1 Soil Acceptance Criteria ^{2,3}
Laboratory Reference	947142.3	947721.1	947721.3	947769.3	947724.15	947721.6										Residential Land Use
Sample Location	MOA004	MOA005	MOA007	MOA014	MOA021	MOA022										ALL PATHWAYS
Soil Fate	Remaining	Remaining	Remaining	Remaining	Remaining	Remaining										
Soil Type - Field					Sand											Sandy Silt
Soil Type - MfE (1999)					Sandy Silt											4.4
Sample Depth (m bgl)	1.0	1.5	1	1	1	1										1 - 4 m
C ₇ -C ₉ hydrocarbons	< 8	< 9	< 10	< 9	< 9	< 9										(500) ^{6,m}
C ₁₀ -C ₁₄ hydrocarbons	< 20	< 20	< 20	< 20	< 20	< 20										(670) ^{6,x}
C ₁₅ -C ₃₆ hydrocarbons	< 40	< 40	< 40	< 40	115	< 40										NA ⁴
TPH	< 70	< 70	< 70	< 70	115	< 70										-
Naphthalene	-	-	-	-	0.14	-									-	83 ^v
Non-carc. (Pyrene)	-	-	-	-	9.3	-							-			NA ⁴
Renzo(a)nyrene eg 7	_	_	_	_	5.29	_										(25) ^{6,m}

- 1. All results in mg/kg.
- 2. Criteria from Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Sites in New Zealand. Revised 2011 (MfE, August 1999).
- 3. Criteria assume residential land use,a 'sand' soil type and contamination depths of <1 m and 1 4 m below ground level.
- 4. NA indicates contaminant is not limiting as health based criterion is significantly higher than may be encountered on site (i.e. 20,000 mg/kg for TPH, 10,000 mg/kg for other contaminants).
- 5. The following notes indicate the limiting pathway for each criterion: d dermal, m maintenance/excavation, p produce, s soil ingestion, v volatilisation, x PAH surrogate.
- $6. \ Brackets \ denote \ values \ exceed \ threshold \ likely \ to \ correspond \ to \ formation \ of \ residual \ separate \ phase \ hydrocarbons.$
- 7. Risk associated with mixture of carcinogenic PAHs assessed by comparison with MfE (2011) Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health. Where a laboratory result for an individual PAH compound is below the laboratory detection limit the concentration is taken to be half the
- 8. National Environmental Standard Residential Contaminant Standard for Human Health Benzo(a)pyrene eq. value adopted.

Concentration above MfE (1999) Tier 1 soil acceptance criteria - ALL PATHWAYS

MOA015 0.1 MOA015 0.1 (duplicate)	MOA005 0.5 947721.8 83	MOA005 0.5 (duplicate) 3 947721.18	%RPD ²
	83	947721.18	
Dry Matter nt nt - 76 nt - nt nt - nt nt - nt nt - nt nt -			3
		nt	-
Total Recoverable Aluminium g/m3 nt 5,600 - nt 12,300 - nt 16,300 - nt 6,700 - nt 13,600 -	nt	nt	-
Total Recoverable Antimony g/m3 27 29 7.1% 4.6 5.2 12.2% 12.8 14.4 11.8% 18.1 23 23.8% 7.3 10.9 39.6%	6.8	4.5	40.7%
Total Recoverable Arsenic g/m3 350 330 5.9% 187 191 2.1% 250 220 12.8% 320 380 17.1% 151 230 41.5%	128	106	18.8%
Total Recoverable Barium g/m3 nt 260 - nt 82 - nt 220 - nt 149 - nt 191 -	nt	nt	-
Total Recoverable Bismuth g/m3 nt <0.4 - nt <0.4 - nt <0.4 - nt 1.0 - nt <0.4 -	nt	nt	-
Total Recoverable Boron g/m3 nt <20 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	nt	nt	-
Total Recoverable Cadmium g/m3 0.20 0.18 10.5% 0.22 0.30 30.8% 0.54 0.49 9.7% 0.16 0.2 22.2% 0.74 0.64 14.5%	< 0.10	< 0.10	-
Total Recoverable Caesium g/m3	nt	nt	-
Total Recoverable Calcium g/m3 nt 2,800 - nt 5,700 - nt 4,300 - nt 2,700 - nt 6,000 -	nt	nt	-
Total Recoverable Chromium g/m3 8 10 22.2% 13 14 7.4% 15 14 6.9% 8 12 40.0% 15 13 14.3%	11	10	9.5%
Total Recoverable Cobalt g/m3 nt 4.3 - nt 9.6 - nt 10.0 - nt 5.9 - nt 9.8 -	nt	nt	-
Total Recoverable Copper g/m3 43 49 13.0% 49 52 5.9% 73 78 6.6% 28 32 13.3% 54 73 29.9%	38	35	8.2%
Total Recoverable Iron g/m3 nt 31,000 - nt 42,000 - nt 35,000 - nt 31,000 - nt 32,000 -	nt	nt	-
Total Recoverable Lanthanum g/m3 nt 4.5 - nt 9.1 - nt 16.3 - nt 5.1 - nt 7.4 -	nt	nt	-
Total Recoverable Lead g/m3 106 112 5.5% 82 78 5.0% 140 156 10.8% 117 131 11.3% 220 240 8.7%	28	28	0.0%
Total Recoverable Lithium g/m3	nt	nt	-
Total Recoverable Magnesium g/m3	nt	nt	-
Total Recoverable Manganese g/m3	nt	nt	-
Total Recoverable Mercury g/m3 27 26 3.8% 3.9 3.9 0.0% 10.4 10.6 1.9% 13.2 15.0 12.8% 11.5 12.3 6.7%	1.02	1.07	4.8%
Total Recoverable Molybdenum g/m3	nt	nt	-
Total Recoverable Nickel g/m3 nt 3 - nt 7 - nt 7 - nt 5 - nt 6 -	nt	nt	-
Total Recoverable Phosphorus g/m3	nt	nt	-
Total Recoverable Potassium g/m3	nt	nt	-
Total Recoverable Rubidium g/m3 nt 5.8 - nt 8.9 - nt 7.2 - nt 6.6 - nt 7.6 -	nt	nt	-
Total Recoverable Selenium g/m3 nt <20 - nt <20	nt	nt	-
Total Recoverable Sodium g/m3 nt 150 - nt 470 - nt 260 - nt 260 - nt 360 -	nt	nt	-
Total Recoverable Strontium g/m3	nt	nt	-
Total Recoverable Thallium g/m3 2.7 2.5 7.7% 1.2 1.1 8.7% 1.9 1.9 0.0% 2.0 2.4 18.2% 1.3 1.8 32.3%	nt	nt	-
Total Recoverable Tin g/m3 nt 4.4 - nt 1.2 - nt 4.2 - nt 3.5 - nt 6.6 -	nt	nt	-
Total Recoverable Uranium g/m3 nt 0.15 - nt 0.29 - nt 0.69 - nt 0.14 - nt 0.33 -	nt	nt	-
Total Recoverable Vanadium g/m3 nt <100 - nt <	nt	nt	-
Total Recoverable Zinc g/m3 101 111 9.4% 148 168 12.7% 162 173 6.6% 76 94 21.2% 250 260 3.9%	105	96	9.0%
Total Petroleum Hydrocarbons Soil			
C7 - C9 mg/kg dry wt nt nt - <9 nt - nt nt - nt nt - nt nt -	<8	nt	-
C10 - C14 mg/kg dry wt nt nt - <20 nt - nt nt - nt nt - nt nt - nt nt -	<20	nt	-
C15 - C36 mg/kg dry wt nt nt - <40 nt - nt nt - nt nt - nt nt -	<40	nt	-
Total hydrocarbons (C7 - C36) mg/kg dry wt nt nt - <70 nt - nt nt - nt nt - nt nt -	< 70	nt	-

nt: Not Tested
 %RPD Relative Percent Difference

Table C5: X-ra	ay Fluoresence (XRI	F) Raw Data - Page 1 of	f 3												
SAMPLE	INSPECTOR	Mo (\pm 2 Σ s.d.)	Mo LOD	$Zr (\pm 2\Sigma s.d.) Sr (\pm 2\Sigma s.d.)$	$U (\pm 2\Sigma s.d.)$	U LOD	Rb ($\pm 2\Sigma$ s.d.)	Th ($\pm 2\Sigma$ s.d.)	Th LOD	Pb ($\pm 2\Sigma s.d.$)	Se (± 2Σs.d.)	Se LOD	As (± 2Σs.d.) As LOD	Hg (\pm 2 Σ s.d.)	Hg LOD
xrf 1	ajr	< LOD	7.15	141.73 ± 8.85 58.51 ± 5.04	< LOD	11.98	43.78 ± 4.91	< LOD	9.00	54.61 ± 10.13	< LOD	4.81	47.68 ± 9.94 -	< LOD	12.51
xrf 2	ajr	< LOD	5.64	117.65 ± 6.54	< LOD	9.46	43.13 ± 3.86	9.92 ± 5.49		154.48 ± 12.13	< LOD	3.55	126.53 ± 12.32 -	< LOD	9.23
xrf 3	ajr	< LOD	7.77	137.31 ± 9.56 72.58 ± 5.99 60.50 ± 6.22 36.13 ± 3.85	< LOD	12.38	49.18 ± 5.50 34.63 ± 4.08	< LOD < LOD	13.01	333.55 ± 23.64 47.97 ± 8.79	< LOD < LOD	5.11 3.42	223.69 ± 23.40 -	< LOD	13.66 9.20
xrf 4 xrf 5	ajr ajr	11.38 ± 4.44 < LOD	5.19	60.50 ± 6.22 36.13 ± 3.85 117.99 ± 6.34 101.49 ± 4.76	< LOD < LOD	9.86 8.64	43.09 ± 3.61	9.29 ± 4.75	7.45	89.38 ± 9.06	< LOD	2.94	91.16 ± 10.49 - 89.37 ± 9.46 -	< LOD < LOD	8.20
xrf 6	ajr	< LOD	5.17	126.93 ± 6.35 80.66 ± 4.27	< LOD	9.01	51.56 ± 3.87	< LOD	6.04	70.19 ± 8.17	< LOD	3.22	108.16 ± 9.41 -	< LOD	7.80
xrf 7	ajr	< LOD	6.96	105.72 ± 7.71 48.28 ± 4.50	< LOD	10.63	34.57 ± 4.30	< LOD	7.77	74.80 ± 11.00	< LOD	4.75	108.31 ± 12.45 -	< LOD	10.41
xrf 8	ajr	7.38 ± 3.96	- 7.70	127.36 ± 7.02 58.55 ± 4.16	< LOD	8.43	23.17 ± 3.18	< LOD	8.69	259.03 ± 15.99	< LOD	3.40	50.64 ± 13.37 -	< LOD	8.29
xrf 9 xrf 10	cf ajr	< LOD < LOD	7.70 5.47	99.15 ± 8.43 38.60 ± 4.62 123.98 ± 7.18 180.66 ± 6.64	< LOD < LOD	13.62 9.93	60.83 ± 6.06 38.30 ± 3.79	< LOD < LOD	9.98 6.34	120.99 ± 14.95 42.12 ± 7.34	< LOD < LOD	5.34 3.54	192.45 ± 17.86 - 82.61 ± 8.70 -	< LOD < LOD	12.12 9.17
xrf 13	cf	< LOD < LOD	6.55	115.99 ± 7.74 83.32 ± 5.42	< LOD	11.18	50.36 ± 4.78	< LOD	8.04	116.77 ± 12.58	< LOD	4.10	135.91 ± 13.79 -	< LOD	10.59
xrf 14	ajr	< LOD	6.46	151.59 ± 8.39 90.68 ± 5.56	< LOD	10.95	50.14 ± 4.72	< LOD	7.95	64.00 ± 9.74	< LOD	3.58	97.97 ± 11.14 -	< LOD	9.62
xrf 15	ajr	< LOD	6.40	116.42 ± 7.61 85.77 ± 5.36	< LOD	10.61	44.01 ± 4.45	< LOD	9.64	240.36 ± 16.94	< LOD	3.86	117.37 ± 15.78 -	< LOD	10.19
xrf 16	ajr	< LOD	4.93	122.32 ± 5.96 52.50 ± 3.43	< LOD	7.18	27.08 ± 2.86	< LOD	5.72	28.24 ± 5.74	< LOD	3.01	26.97 ± 5.50 -	< LOD	6.90
xrf 17	ajr	< LOD < LOD	6.11	83.15 ± 6.52 22.60 ± 3.17	< LOD < LOD	10.09	49.78 ± 4.57	< LOD 12.23 ± 6.10	6.63	18.64 ± 6.39 34.99 ± 8.52	< LOD < LOD	3.19	50.39 ± 7.59 - 40.95 ± 8.58 -	< LOD	8.01
xrf 18 xrf 19	ajr ajr	< LOD < LOD	7.11 8.42	267.11 ± 11.44 234.88 ± 9.12 132.36 ± 10.22 81.27 ± 6.77	< LOD < LOD	12.47 14.88	45.96 ± 4.94 57.48 ± 6.42	12.23 ± 6.10 < LOD	10.52	60.99 ± 12.38	< LOD	4.32 5.71	121.96 ± 15.10 -	< LOD < LOD	11.26 12.81
xrf 20	ajr	< LOD	7.43	135.54 ± 9.15 44.48 ± 4.78	< LOD	12.44	49.09 ± 5.40	< LOD	9.60	58.03 ± 10.96	< LOD	4.94	144.24 ± 14.30 -	< LOD	11.67
xrf 21	ajr	< LOD	8.18	176.36 ± 10.78 60.69 ± 5.78	< LOD	13.03	37.87 ± 5.23	< LOD	9.96	33.08 ± 9.64	< LOD	4.80	30.14 ± 9.22 -	< LOD	12.50
xrf 22	ajr	< LOD	6.85	171.05 ± 9.23 73.98 ± 5.42	< LOD	11.72	48.65 ± 4.97	< LOD	8.09	52.86 ± 9.66	< LOD	4.05	135.90 ± 12.74 -	< LOD	11.26
xrf 23	ajr	< LOD	7.94	174.87 ± 10.95 94.44 ± 7.01	< LOD	12.13	31.14 ± 4.83	< LOD	9.61	23.25 ± 8.58	< LOD	4.23	< LOD 10.38	< LOD	12.52
xrf 24 xrf 25	ajr ajr	< LOD < LOD	7.49 6.98	306.69 ± 12.10 82.44 ± 5.92 203.12 ± 9.89 63.23 ± 5.11	< LOD < LOD	11.68 9.80	35.32 ± 4.60 22.67 ± 3.71	17.85 ± 6.53 < LOD	- 7.87	10.71 ± 6.73 16.24 ± 6.81	< LOD < LOD	4.38 3.67	11.63 ± 5.89 - < LOD 8.36	< LOD < LOD	10.67 9.40
xrf 26	ajr ajr	< LOD < LOD	7.44	203.12 ± 9.89 03.23 ± 5.11 220.61 ± 10.64 58.06 ± 5.15	< LOD < LOD	9.43	23.17 ± 3.82	< LOD	8.34	10.24 ± 0.81 14.40 ± 7.02	< LOD	4.50	9.18 ± 5.97 -	< LOD	10.53
xrf 26	ajr	< LOD	5.08	221.99 ± 7.49 45.24 ± 3.30	< LOD	7.15	19.96 ± 2.62	7.12 ± 3.86	-	12.99 ± 4.85	< LOD	3.00	6.93 ± 4.02 -	< LOD	7.78
xrf 27	ajr	< LOD	6.88	152.03 ± 8.78 48.96 ± 4.57	< LOD	9.88	22.50 ± 3.69	8.92 ± 5.38	-	12.41 ± 6.46	< LOD	3.88	< LOD 7.84	< LOD	9.97
xrf 28	ajr	< LOD	5.99	112.21 ± 7.00 76.71 ± 4.77	< LOD	10.40	53.51 ± 4.48	< LOD	8.55	137.35 ± 12.38	< LOD	4.19	60.42 ± 11.18 -	< LOD	9.76
xrf 29	ajr	< LOD	7.30	100.40 ± 8.36 83.46 ± 6.11	< LOD	12.80	50.37 ± 5.41	< LOD	9.01	64.71 ± 11.19	< LOD	4.58	117.66 ± 13.41 -	< LOD	11.61
xrf 30 xrf 31	ajr ajr	< LOD < LOD	5.04 7.92	182.83 ± 6.91 84.40 ± 4.17 125.76 ± 9.42 88.88 ± 6.57	< LOD < LOD	8.22 13.66	43.85 ± 3.46 46.33 ± 5.53	< LOD < LOD	5.77 9.57	32.39 ± 5.97 94.36 ± 13.57	< LOD < LOD	2.85 4.93	22.00 ± 5.44 - 91.36 ± 14.10 -	< LOD < LOD	6.94 13.08
xrf 32	ajr	< LOD	6.75	131.54 ± 8.25 72.95 ± 5.28	< LOD	11.16	53.58 ± 5.02	< LOD	7.03	28.45 ± 7.71	< LOD	3.94	15.47 ± 6.75 -	< LOD	9.37
xrf 33	cf	< LOD	7.70	637.49 ± 16.24 74.93 ± 5.60	< LOD	11.90	47.96 ± 5.06	16.49 ± 6.52	-	26.38 ± 8.03	< LOD	3.98	< LOD 9.84	< LOD	11.07
xrf 34	cf	< LOD	8.52	198.23 ± 12.57 271.64 ± 11.78	< LOD	14.45	43.98 ± 5.80	< LOD	10.01	41.27 ± 10.68	< LOD	4.82	43.10 ± 10.73 -	< LOD	12.85
xrf 34a	cf ·	< LOD	6.94	283.67 ± 11.01 62.81 ± 5.00	< LOD	11.52	59.60 ± 5.28	< LOD	8.32	52.18 ± 9.54	< LOD	4.05	69.00 ± 10.29 -	< LOD	10.14
xrf 35 xrf 36	ajr ajr	< LOD < LOD	6.45 7.17	126.24 ± 8.46 264.16 ± 8.97 116.59 ± 8.73 84.57 ± 6.13	< LOD < LOD	11.03 11.81	38.44 ± 4.26 43.72 ± 5.04	< LOD < LOD	7.76 9.23	91.13 ± 11.08 71.81 ± 11.64	< LOD < LOD	4.06 4.49	50.46 ± 10.29 - 36.30 ± 10.54 -	< LOD < LOD	10.18 10.90
xrf 37	ajr ajr	< LOD < LOD	7.17	137.51 ± 8.99 122.82 ± 6.93	< LOD	10.81	36.82 ± 4.50	< LOD	8.32	37.79 ± 8.88	< LOD	4.49	28.75 ± 8.30 -	< LOD	10.84
xrf 38	ajr	< LOD	7.19	133.55 ± 8.96 82.33 ± 5.97	< LOD	13.22	63.17 ± 5.85	< LOD	7.83	21.78 ± 7.68	< LOD	4.10	21.82 ± 7.26 -	< LOD	10.45
xrf 39	ajr	< LOD	4.75	91.37 ± 5.13 37.67 ± 2.87	< LOD	6.90	30.36 ± 2.83	< LOD	5.00	23.30 ± 5.13	< LOD	2.55	23.08 ± 4.89 -	< LOD	6.56
xrf 40	ajr	< LOD	7.35	149.61 ± 9.38 82.39 ± 6.01	< LOD	12.27	42.01 ± 5.00	9.18 ± 6.03	-	30.38 ± 8.65	< LOD	4.83	23.40 ± 7.92 -	< LOD	10.08
xrf 41	ajr	< LOD	6.87	278.28 ± 10.82 62.70 ± 4.94	< LOD	10.71	42.02 ± 4.54	< LOD	8.23	38.97 ± 8.57	< LOD	4.03	20.40 ± 7.55 -	< LOD	9.59
xrf 42 xrf 43	ajr ajr	< LOD 5.67 ± 3.75	7.27	120.58 ± 8.91	< LOD < LOD	12.33 9.60	53.98 ± 5.57 50.44 ± 4.08	< LOD < LOD	8.66 7.61	29.03 ± 8.56 127.62 ± 11.16	< LOD < LOD	4.01 3.72	28.49 ± 8.29 - 448.00 ± 17.51 -	< LOD 14.94 ± 6.59	10.51
xrf 44	ajr	< LOD	5.33	101.42 ± 6.08 40.94 ± 3.37	< LOD	9.33	53.98 ± 4.11	16.01 ± 9.53	-	1097.06 ± 29.39	< LOD	3.89	217.80 ± 24.75 -	< LOD	8.82
xrf 45	ajr	5.28 ± 3.48	-	134.07 ± 6.37 81.80 ± 4.22	< LOD	8.36	40.85 ± 3.47	< LOD		42.43 ± 6.67	< LOD		63.63 ± 7.34 -	< LOD	7.07
xrf 46	ajr	< LOD	7.91	126.15 ± 9.17 30.75 ± 4.32	< LOD	13.75	53.26 ± 5.84	< LOD	9.69	61.99 ± 11.57	< LOD	4.72	122.13 ± 14.16 -	< LOD	12.46
xrf 47	ajr	< LOD	5.29	137.27 ± 6.92 99.20 ± 4.91	< LOD	9.29	50.86 ± 4.02	< LOD	7.10	114.40 ± 10.46	< LOD	3.22	91.54 ± 10.50 -	< LOD	8.86
xrf 48	ajr	< LOD	5.04	155.54 ± 6.54 59.89 ± 3.66	9.05 ± 6.00	1/100	48.98 ± 3.71	< LOD	6.10	95.76 ± 9.00	< LOD	3.22	151.87 ± 10.63 -	9.56 ± 5.30	12.05
xrf 49 xrf 50	ajr ajr	< LOD < LOD	7.54 7.56	107.46 ± 8.66 51.86 ± 5.17 117.55 ± 8.89 63.55 ± 5.56	< LOD < LOD	14.88 13.21	68.27 ± 6.42 62.46 ± 6.02	< LOD < LOD	8.56 10.18	46.35 ± 10.27 127.36 ± 15.13	< LOD < LOD	5.16 5.39	74.65 ± 11.54 - 144.62 ± 16.47 -	< LOD < LOD	12.95 11.72
xrf 51	ajr	8.75 ± 3.74	-	103.24 ± 6.20 66.98 ± 4.12	< LOD	9.32	45.78 ± 3.87	8.10 ± 5.11	-	128.07 ± 10.97	< LOD	3.59	141.29 ± 11.86 -	< LOD	8.66
xrf 52	ajr	< LOD	7.67	140.82 ± 9.96 93.45 ± 6.84	< LOD	12.86	50.16 ± 5.69	< LOD	9.93	67.48 ± 12.07	< LOD	4.39	24.84 ± 10.50 -	< LOD	11.73
xrf 100	ajr	< LOD	5.50	155.85 ± 7.09 60.10 ± 3.96	< LOD	9.50	49.94 ± 4.02	< LOD	6.53	50.17 ± 7.61	< LOD	3.60	77.88 ± 8.53 -	< LOD	8.50
xrf 101	ajr	< LOD	6.00	72.54 ± 6.02 30.98 ± 3.38	< LOD	11.72	80.79 ± 5.44	< LOD	6.61	28.60 ± 6.86	< LOD	2.82	58.46 ± 7.95 -	< LOD	8.27
xrf 102 xrf 110	ajr ajr	< LOD < LOD	5.66 5.81	94.50 ± 6.48 110.95 ± 5.38 111.75 ± 6.99 70.61 ± 4.62	< LOD < LOD	8.64 10.65	40.83 ± 3.77 54.37 ± 4.55	< LOD < LOD	6.68 7.63	47.28 ± 7.73 59.39 ± 8.82	< LOD < LOD	3.30 3.82	33.57 ± 7.27 - 152.63 ± 11.71 -	< LOD < LOD	8.34 9.98
xrf 130	ajr ajr	< LOD < LOD	5.16	111.73 ± 6.99 76.61 ± 4.62 158.00 ± 6.76 52.02 ± 3.56	< LOD < LOD	8.33	35.77 ± 3.36	< LOD <	5.59	28.76 ± 5.99	< LOD	3.02	31.17 ± 5.89 -	< LOD	7.07
xrf 140	ajr	< LOD	6.56	236.40 ± 10.11 98.86 ± 5.92	< LOD	11.21	38.61 ± 4.42	< LOD	7.51	27.87 ± 7.61	< LOD	4.21	43.97 ± 8.07 -	< LOD	9.37
xrf 150	ajr	< LOD	6.74	99.48 ± 7.76	< LOD	11.25	46.41 ± 4.84	< LOD	8.40	72.59 ± 10.93	< LOD	4.26	86.06 ± 11.74 -	< LOD	10.83
xrf 151	ajr	< LOD	8.34	120.88 ± 10.96 304.07 ± 12.32	< LOD	14.69	44.53 ± 5.79	< LOD	11.81	168.69 ± 18.61	< LOD	5.68	74.25 ± 16.90 -	< LOD	13.96
xrf 152	ajr	< LOD	6.66	140.77 ± 8.37 88.48 ± 5.64	< LOD	11.07	48.13 ± 4.74	< LOD	8.48	80.59 ± 11.01	< LOD	4.44	74.03 ± 11.16 -	< LOD	10.58
xrf 301 xrf 302	ajr ajr	< LOD < LOD	5.45 7.03	112.95 ± 6.69 84.46 ± 4.7 142.03 ± 8.72 58.31 ± 4.98	< LOD < LOD	10.34 11.59	64.83 ± 4.62 61.65 ± 5.47	< LOD < LOD	7.92	776.73 ± 26.03 40.95 ± 8.93	< LOD < LOD	4.70 3.78	348.24 ± 24.12 - 70.95 ± 10.22 -	< LOD < LOD	9.94 10.36
xrf 303	ajı ajr	< LOD < LOD	6.81	164.22 ± 8.95 33.13 ± 3.95	< LOD < LOD	10.84	41.46 ± 4.63	< LOD < LOD	8.67	102.51 ± 12.54	< LOD	3.78	141 ± 14.31 -	< LOD	10.36
xrf 304	ajr	< LOD	8.59	58.98 ± 8.32 42.17 ± 5.45	< LOD	13.34	35.84 ± 5.49	< LOD	9.89	61.17 ± 12.83	< LOD	5.51	195.2 ± 18.53 -	< LOD	17.04
xrf 305	ajr	< LOD	8.26	120.37 ± 10.39 113.82 ± 8.06	< LOD	15.19	48.22 ± 6.23	< LOD	17.72	695.87 ± 37.14	< LOD	6.08	225.95 ± 32.89 -	< LOD	14.42
xrf 306	ajr	< LOD	8.27	95.69 ± 9.16	< LOD	14.07	61.06 ± 6.52	< LOD	16.42	591.3 ± 33.5	< LOD	5.50	448.15 ± 34.26 -	< LOD	15.01
xrf 307	ajr	< LOD	7.08	130.6 ± 8.59	< LOD	12.90	60.88 ± 5.66	< LOD	8.64	47.55 ± 9.58	< LOD	3.75	88.14 ± 11.33 -	< LOD	10.67
xrf 500	ajr	< LOD	8.38	328.16 ± 13.69 124.34 ± 7.75	< LOD	13.98	51.34 ± 5.83	13.07 ± 6.99	-	33.64 ± 9.67	< LOD	5.36	14.56 ± 8.20 -	< LOD	12.73

1. All values in ppm

2. LOD: Limit of Detection

3. (\pm 2 Σ s.d.): Plus or minus two standard deviation

Table C5: X-ra	ay Fluoresence (XRF) Raw Data - Page 2 of	3																
SAMPLE	Zn (\pm 2 Σ s.d.) Cu (± 2Σs.d.)	Cu LOD	Ni (\pm 2 Σ s.d.)	Ni LOD	Co (\pm 2 Σ s.d.)	Co LOD	Fe (± 2Σ	s.d.)	Mn (± :	2Σs.d.)	Cr (\pm 2 Σ s.d.)	Cr LOD	$V (\pm 2\Sigma s.d.)$	V LOD	Ti (\pm 2 Σ s.d.)	$Sc(\pm 2\Sigma s.d.)$	Sc LOD	Ca (± 2Σs.d.)
xrf 1	57.59 ± 14.92		35.50	< LOD	79.33	< LOD	161.79					< LOD	30.90	68.36 ± 39.39	-	1221.66 ± 82.79		-	2326.48 ± 144.94
xrf 2		1 54.27 ± 17.41	-	< LOD	51.30	< LOD	127.96	20674.03				< LOD	29.23	63.19 ± 37.58	-	1603.67 ± 79.54	< LOD	17.31	2872.27 ± 137.00
xrf 3 xrf 4	302.85 ± 29.0 74.81 ± 13.61		-	< LOD < LOD	74.67 54.72	< LOD < LOD	216.59 113.58	31247.37 11314.30				< LOD < LOD	54.97 40.67	< LOD < LOD	66.46	2104.05 ± 149.93 880.20 ± 91.87	< LOD < LOD	37.81 21.03	5241.74 ± 299.03 1482.87 ± 161.55
xrf 5	72.75 ± 11.66		-	< LOD	46.99	< LOD	142.50	28268.49				< LOD	59.02	< LOD		1806.84 ± 149.38	< LOD	41.48	6442.03 ± 342.95
xrf 6	154.07 ± 14.8		-	< LOD	44.06	< LOD	132.49	24690.93				< LOD	64.43	< LOD	126.10	2678.18 ± 183.32	< LOD	42.44	6079.40 ± 354.32
xrf 7	83.75 ± 15.74		-	< LOD	61.35	< LOD	164.62	22151.26				< LOD	45.21	89.00 ± 58.07	-	1510.17 ± 120.19	< LOD	29.95	3987.54 ± 240.27
xrf 8 xrf 9	187.73 ± 17.7 80.54 ± 17.96		35.08	< LOD < LOD	48.51 72.21	< LOD < LOD	133.50 216.52	20043.29 31470.77				85.69 ± 44.43 < LOD	50.64	< LOD < LOD		1610.45 ± 146.80 2315.01 ± 153.80	< LOD < LOD	53.34 29.89	11327.23 ± 435.59 3120.71 ± 245.17
xrf 10		6 63.02 ± 18.16	- 33.06	< LOD	55.59	< LOD < LOD	176.10	39357.52				< LOD	62.54	< LOD		3318.41 ± 200.49	< LOD	77.08	23002.48 ± 630.52
xrf 13	106.80 ± 16.5		-	< LOD	59.61	< LOD	186.14	31634.88				< LOD		188.86 ± 103.95	-	3694.41 ± 222.58	< LOD	50.34	7762.25 ± 413.62
xrf 14	101.27 ± 15.7		-	< LOD	57.85	< LOD	170.85	27233.86				< LOD	65.91	< LOD	143.33	3581.29 ± 209.54	< LOD	47.41	6879.84 ± 379.70
xrf 15	308.35 ± 24.4		-	< LOD	56.06	< LOD	181.30	31592.95						143.34 ± 85.35	- 107.14	2465.27 ± 177.99	< LOD	45.37	7777.90 ± 369.76
xrf 16 xrf 17	42.67 ± 9.23 36.44 ± 10.45		22.59	< LOD < LOD	42.86 50.41	< LOD < LOD	114.26 113.28	19656.09 11429.74				< LOD < LOD	52.40 68.02	< LOD 167.08 ± 98.23	-	2306.18 ± 154.61 3801.43 ± 213.54	< LOD < LOD	35.94 40.44	4620.63 ± 279.77 4538.56 ± 347.56
xrf 18	95.23 ± 16.81		30.28	< LOD	72.23	< LOD	181.61	28028.94					42.98	< LOD		1676.48 ± 119.10	< LOD	44.87	12183.99 ± 368.44
xrf 19		8 45.43 ± 25.26	-	< LOD	76.53	< LOD	244.77	34288.77				< LOD	66.41	172.85 ± 86.13	-	2182.09 ± 175.26	< LOD	45.37	6554.38 ± 368.72
xrf 20	99.11 ± 17.97		-	< LOD	70.23	< LOD	171.64	20553.22				< LOD	41.93	< LOD		1486.05 ± 113.61	< LOD	23.44	2415.21 ± 186.81
xrf 21 xrf 22	73.15 ± 17.44 50.28 ± 13.60		33.26 27.60	< LOD < LOD	76.73 63.21	< LOD < LOD	202.38 189.63	24622.92 28638.88				< LOD < LOD	71.57 67.96	< LOD < LOD		2015.90 ± 185.76 3112.83 ± 212.46	< LOD < LOD	42.75 47.95	3687.91 ± 329.47 7277.80 ± 390.62
xrf 23	38.17 ± 15.74		34.98	< LOD < LOD	79.77	< LOD < LOD	245.72							151.59 ± 95.78	- 149.13	3743.27 ± 208.82	< LOD	45.82	6649.53 ± 348.82
xrf 24	42.91 ± 13.66		27.50	< LOD	67.52	< LOD	198.17	29343.70				< LOD	80.33	204.17 ± 124.69	-	4864.34 ± 269.27	< LOD	51.38	7237.12 ± 410.09
xrf 25	60.48 ± 14.16		25.93	< LOD	59.84	< LOD	177.90	25673.18				< LOD	77.15	< LOD		4621.40 ± 251.46	< LOD	48.18	5404.58 ± 359.55
xrf 26	47.36 ± 14.33	3 < LOD 3 22.36 ± 13.49	29.14	< LOD < LOD	66.28 43.84	< LOD < LOD	206.24 128.25	30300.23 24568.43				< LOD < LOD	66.50 58.35	175.74 ± 97.83 < LOD	105.00	3683.23 ± 210.40	< LOD < LOD	36.95 31.34	3840.94 ± 283.88
xrf 26 xrf 27	36.80 ± 10.13		26.77	< LOD	61.04	172.84 ± 92.51	128.25	14234.27				< LOD < LOD	53.91	< LOD < LOD		3589.78 ± 186.03 1696.62 ± 134.86	< LOD	29.05	3152.60 ± 239.55 2922.21 ± 249.31
xrf 28		7 101.51 ± 21.65		< LOD	57.34	< LOD	154.14	_				< LOD	50.80	119.28 ± 71.15	-	2425.14 ± 152.90	< LOD	36.66	5159.24 ± 296.01
xrf 29	106.72 ± 18.5		30.39	< LOD	67.84	< LOD	212.06	32556.66	± 506.65	444.17	± 87.38	< LOD	65.99	< LOD	140.13	2913.48 ± 200.94	< LOD	58.35	12680.50 ± 494.42
xrf 30	75.71 ± 10.93		-	< LOD	42.13	< LOD	126.02	24569.55				< LOD		127.09 ± 77.51	-	3435.38 ± 169.97	< LOD	41.18	7799.10 ± 326.24
xrf 31 xrf 32	114.22 ± 20.4 50.07 ± 12.80		36.35	< LOD < LOD	85.41 55.29	< LOD < LOD	243.99 148.86	37642.92 17873.05		534.87		< LOD < LOD	42.38 67.46	100.35 ± 56.84 169.76 ± 94.22	-	1715.64 ± 119.77 3329.58 ± 201.73	48.82 ± 21.98 < LOD	53.24	4691.97 ± 242.80 10287.25 ± 447.54
xrf 33	63.69 ± 15.33		28.09	< LOD < LOD	64.57	< LOD < LOD	220.16		± 518.99			< LOD < LOD	86.17	< LOD	177.83	3717.32 ± 262.12	< LOD < LOD	72.54	13790.38 ± 592.19
xrf 34	99.32 ± 20.24		36.12	< LOD	74.05	< LOD	202.74	23576.96				< LOD	51.52	< LOD		1699.23 ± 149.15	< LOD	119.87	72843.19 ± 1000.46
xrf 34a	68.57 ± 14.33		-	< LOD	57.94	< LOD	159.24	21631.30				< LOD	69.87	< LOD		4083.91 ± 227.89	< LOD	43.52	6003.48 ± 368.61
xrf 35	122.21 ± 17.1		-	< LOD	61.38	< LOD	185.73	33002.60				< LOD	52.09	< LOD		1719.33 ± 135.38	< LOD	73.75	29583.11 ± 624.05
xrf 36 xrf 37	132.40 ± 19.5 85.63 ± 16.64		-	< LOD < LOD	65.56 64.90	< LOD < LOD	173.77 188.35	21561.03 28823.40				< LOD < LOD	54.15 50.62	171.18 ± 77.25 < LOD	103.26	2521.05 ± 162.01 2367.92 ± 151.28	< LOD < LOD	45.67 43.15	8530.96 ± 372.00 8992.60 ± 355.76
xrf 38	93.91 ± 17.01		-	< LOD	65.31	< LOD	165.18	20185.91				< LOD		115.70 ± 71.56	-	2494.27 ± 153.11	< LOD	39.29	7921.41 ± 338.26
xrf 39	594.68 ± 24.2	8 28.21 ± 12.58	-	< LOD	38.95	< LOD	77.27	9381.20	± 178.81	323.34	± 46.35	< LOD	42.60	< LOD	81.18	1501.16 ± 115.27	< LOD	28.15	3740.49 ± 227.79
xrf 40	72.77 ± 15.65		-	< LOD	63.79	< LOD	173.04					187.66 ± 47.13	-	132.47 ± 84.40	-	3151.94 ± 183.38	< LOD	44.78	7477.28 ± 363.70
xrf 41	99.62 ± 15.85		25.51	< LOD < LOD	58.64 63.87	< LOD < LOD	150.30 185.75	19025.04 24025.44				< LOD	61.45 49.60	< LOD < LOD		3405.51 ± 193.27	< LOD	39.91 33.36	6042.08 ± 332.58
xrf 42 xrf 43	70.64 ± 16.18 74.06 ± 13.00		-	< LOD < LOD	54.69	< LOD < LOD	189.32	46057.33				< LOD < LOD	60.31	130.75 ± 83.84	99.11	2526.82 ± 149.69 2315.75 ± 174.18	< LOD < LOD	33.91	5315.81 ± 287.19 2299.49 ± 253.50
xrf 44	33.75 ± 9.77		-	< LOD	47.02	< LOD	138.90					< LOD	37.18	89.57 ± 50.04		2176.88 ± 107.35	< LOD	24.83	4172.53 ± 195.32
xrf 45	75.17 ± 10.98	3 22.15 ± 13.02	-	< LOD	42.27	< LOD	103.19	15168.65	± 242.64	300.18	± 49.68	< LOD	59.26			1674.90 ± 153.86	< LOD	39.97	5782.94 ± 347.82
xrf 46	80.80 ± 17.34		34.06	< LOD	69.75	< LOD		16548.59				< LOD				1472.53 ± 113.97	< LOD		5330.85 ± 259.67
xrf 47 xrf 48		8 35.53 ± 15.99 3 34.25 ± 13.91	-	< LOD < LOD	51.57 45.85	< LOD < LOD		31766.85 28969.58				< LOD < LOD	54.92 60.96	< LOD 157.61 ± 85.84		2525.06 ± 162.63 3134.13 ± 182.37	< LOD < LOD	41.75 38.20	7294.63 ± 347.94 5003.94 ± 302.85
xrf 49	47.14 ± 15.11		36.40	< LOD	78.19	< LOD < LOD		22556.47				< LOD		103.26 ± 46.59		1486.71 ± 96.97	< LOD		2295.09 ± 165.64
xrf 50	142.77 ± 21.3	7 77.89 ± 24.99	-	< LOD	71.06	< LOD	215.75	32550.34	± 518.49	512.44	± 93.91	< LOD	57.05	< LOD	114.00	2009.63 ± 158.70	< LOD	37.81	5340.34 ± 315.62
		4 70.12 ± 17.57		< LOD	49.20	< LOD		20333.45				< LOD		113.14 ± 56.07		1595.80 ± 115.69			6600.02 ± 287.14
xrf 52		7 51.02 ± 23.53 0 30.45 ± 15.75		< LOD	70.12	< LOD		24689.17				< LOD 72.68 ± 29.79	56.72	< LOD < LOD		2554.32 ± 158.01 2532.27 ± 124.51	< LOD	43.39	7863.89 ± 350.98
xrf 100 xrf 101	94.87 ± 13.20 52.15 ± 11.17		22.25	< LOD < LOD	51.35 47.81	< LOD < LOD		12065.77				72.68 ± 29.79 < LOD	- 52.63	151.78 ± 72.09		2532.27 ± 124.51 2306.26 ± 150.26	< LOD < LOD		3641.62 ± 212.57 2743.65 ± 256.60
xrf 102		2 30.79 ± 15.52		< LOD	50.18	< LOD		24630.78				< LOD	55.55			4207.66 ± 207.98	< LOD		22519.68 ± 592.78
xrf 110		6 61.11 ± 19.88		< LOD	58.61	< LOD		32656.98				< LOD	43.75			1676.54 ± 122.33			4562.54 ± 250.99
xrf 130	30.13 ± 8.38		19.56	< LOD	42.35	< LOD	83.63					< LOD	44.94			2479.98 ± 136.17	< LOD	21.91	1761.32 ± 177.70
xrf 140 xrf 150	81.03 ± 14.80 69.03 ± 14.58	29.13 ± 17.72 3 < LOD	- 26.75	< LOD < LOD	60.13 58.77	< LOD < LOD		22999.93 23483.20				< LOD < LOD	64.97 63.71	< LOD 149.81 ± 87.39		3064.58 ± 199.52 2489.56 ± 182.42		48.54 48.86	8158.73 ± 401.64 8047.81 ± 395.86
		4 43.51 ± 25.88		< LOD < LOD	79.61	< LOD		33315.70						102.32 ± 63.27		1952.41 ± 138.46			40292.42 ± 714.74
xrf 152		1 60.79 ± 20.30		< LOD	58.99	< LOD		27554.14				< LOD		144.71 ± 80.75		2641.80 ± 170.98	< LOD	44.30	7959.44 ± 361.53
xrf 301		8 145.31 ± 21.57	-	< LOD	55.46	< LOD		46170.46				< LOD		148.88 ± 97.12		2855.64 ± 204.85	< LOD	55.27	10227.29 ± 467.25
xrf 302		2 32.41 ± 18.63	- 04.40	< LOD	60.45	< LOD		21880.41				< LOD	64.59			3327.39 ± 197.24	< LOD	39.62	4688.66 ± 324.99
xrf 303 xrf 304	31.49 ± 11.31 34.76 ± 16.24		24.40 41.90	< LOD < LOD	53.50 83.96	< LOD < LOD	126.41 165.45	12542.93 14043.32				< LOD < LOD	57.36 27.37	< LOD < LOD		3046.09 ± 177.16 854.06 ± 70.2	< LOD < LOD	29.36 14.33	2067.88 ± 237.69 1297.89 ± 113.17
xrf 305	71.75 ± 19.22		37.78	< LOD	82.92	< LOD < LOD	250.48					< LOD	51.79			2488.92 ± 165.28	< LOD	41.08	7623.87 ± 344.55
xrf 306	38.79 ± 16.56		-	< LOD	81.01	< LOD		43105.28	± 651.15	120.12 :	± 76.37	< LOD	57.21		114.34	1728.44 ± 157.26	< LOD	25.98	1275.51 ± 202.01
xrf 307	79.21 ± 15.98		28.13	< LOD	61.70	< LOD	183.48					< LOD	68.47			3914.05 ± 223.35	< LOD	42.10	5178.91 ± 346.21
xrf 500	74.16 ± 17.41	L < LOD	33.01	< LOD	70.54	< LOD	205.39	26983.94	± 490.51	853.96	± 116.34	< LOD	61.89	< LOD	134.51	3666.08 ± 198.30	< LOD	49.91	9849.09 ± 410.55

All values in ppm
 LOD: Limit of Detection

3. (\pm 2 Σ s.d.): Plus or minus two standard deviation

Table C5: X-ra	y Fluoresence (XRF) Raw [Data - Page 3 of 3																
SAMPLE	$K (\pm 2\Sigma s.d.)$	S (\pm 2 Σ s.d.)	S LOD Ba (± 2Σs.d.)	Ba LOD	Cs (\pm 2 Σ s.d.)	Cs LOD	Te ($\pm 2\Sigma$ s.d.)	Te LOD	Sb ($\pm 2\Sigma$ s.d.)	Sb LOD	Sn (\pm 2 Σ s.d.)	Sn LOD	Cd ($\pm 2\Sigma$ s.d	Cd LOD	Ag ($\pm 2\Sigma$ s.d.)	Ag LOD	Pd ($\pm 2\Sigma s.d.$.Pd LOD
xrf 1	4453.35 ± 292.41	< LOD	699.53 373.41 ± 52.38	-	116.61 ± 18.61		245.44 ± 60.61	-	86.70 ± 22.43	-	< LOD	20.97	< LOD		20.25 ± 10.30	-	< LOD	20.58
		1151.67 ± 508.24	- 97.45 ± 34.41	-	< LOD	18.51	< LOD	60.16	< LOD	22.13	< LOD	13.95	< LOD	12.98	< LOD	9.96	< LOD	12.98
	11404.98 ± 611.77	1622.67 ± 982.87	- 375.52 ± 42.13	-	86.09 ± 14.71	-	186.34 ± 47.96	-	81.21 ± 18.01	-	21.09 ± 11.23	-	26.11 ± 11.02	-	14.91 ± 8.11	-	< LOD	15.73
xrf 4	7761.07 ± 433.44	< LOD	992.76 < LOD	45.71	< LOD	16.56	< LOD	53.34	< LOD	19.73	< LOD	12.44	< LOD	12.07	< LOD	8.87	< LOD	12.44
	12628.71 ± 668.40 14601.21 ± 741.96	< LOD < LOD	1347.89 121.89 ± 33.52 1408.74 126.13 ± 31.38	-	< LOD < LOD	17.85 16.76	< LOD < LOD	57.35 53.66	< LOD < LOD	21.24 19.85	< LOD < LOD	13.63 12.83	< LOD < LOD	12.82 11.87	< LOD < LOD	9.33 8.77	< LOD < LOD	12.94 12.03
xrf 7	6876.63 ± 448.42	< LOD	1114.32 < LOD	49.54	< LOD	18.00	< LOD	56.96	< LOD	21.21	< LOD	13.38	< LOD	12.82	< LOD	9.68	< LOD	12.76
xrf 8		2191.55 ± 1144.24	- < LOD	40.02	< LOD	14.66	< LOD	46.11	< LOD	16.92	< LOD	10.89	< LOD	10.39	< LOD	7.52	< LOD	10.62
xrf 9	13735.86 ± 644.54	< LOD	1346.54 280.41 ± 36.67	-	61.76 ± 12.92	-	134.62 ± 42.09	-	61.61 ± 15.74	-	21.55 ± 9.98	-	< LOD	13.98	< LOD	10.45	< LOD	14.07
xrf 10	10872.80 ± 676.70	2552.34 ± 1340.47		-	156.25 ± 15.60	-	322.46 ± 51.08	-	111.13 ± 18.98	-	51.68 ± 12.14	-	29.37 ± 11.44	-	22.99 ± 8.66	-	< LOD	17.00
	13797.04 ± 774.14	< LOD	1853.09 221.18 ± 34.22	-	55.07 ± 12.17	-	89.40 ± 39.34	-	35.25 ± 14.53	-	15.76 ± 9.35	-	< LOD	13.00	< LOD	9.58	< LOD	12.76
	12415.67 ± 713.57		- 210.59 ± 33.54	-	42.07 ± 11.87	-	< LOD	57.13	< LOD	21.04	< LOD	13.51	< LOD	12.84	< LOD	9.60	< LOD	12.63
xrf 15 xrf 16	9933.20 ± 611.96 5973.04 ± 464.96	2250.62 ± 1147.96 < LOD	- 301.46 ± 36.81 1209.93 191.57 ± 34.23	-	55.53 ± 12.86 38.24 ± 12.16	-	150.21 ± 42.20 73.32 ± 39.44	-	58.28 ± 15.66 < LOD	21.40	< LOD < LOD	14.77 13.79	< LOD < LOD	13.90 13.08	< LOD < LOD	10.16 9.60	< LOD < LOD	13.85 12.85
	21324.85 ± 916.53	< LOD	1635.40 64.58 ± 28.00	-	< LOD	15.13	< LOD	48,44	< LOD	17.85	< LOD	11.34	< LOD	10.43	< LOD	7.84	< LOD	10.77
		1535.08 ± 849.47	- 479.08 ± 48.10	-	131.34 ± 16.78	-	261.03 ± 54.61	-	87.72 ± 20.20	-	42.05 ± 12.98	-	30.81 ± 12.43	-	21.85 ± 9.34	-	< LOD	17.98
xrf 19	12072.38 ± 700.99	3742.95 ± 1399.37	- 127.69 ± 33.14	-	< LOD	17.72	< LOD	56.42	< LOD	21.15	< LOD	13.36	< LOD	12.87	< LOD	9.12	< LOD	12.48
	8516.97 ± 456.03	< LOD	1031.21 337.73 ± 41.16	-	82.70 ± 14.47	-	208.53 ± 47.57	-	76.95 ± 17.67	-	< LOD	16.42	17.63 ± 10.62	-	< LOD	11.66	25.15 ± 11.35	-
	7449.76 ± 655.08	< LOD	1764.48 -	-	- 40.04 : 11.05	-		-		-	-	- 40.70	-	-	-	-	-	- 40.00
	11402.34 ± 694.34 6705.94 ± 530.48	< LOD < LOD	1574.00 298.91 ± 34.44 1289.35 363.58 ± 39.20	-	49.84 ± 11.98 75.44 ± 13.61	-	75.75 ± 38.66 107.44 ± 43.74	-	38.68 ± 14.40 33.10 ± 16.03	-	< LOD 22.48 ± 10.46	13.70	< LOD < LOD	12.98 14.39	< LOD < LOD	9.27 10.48	< LOD < LOD	13.20 14.81
xrf 23 xrf 24	9418.94 ± 677.68	< LOD < LOD	1703.20 325.84 ± 34.97	-	75.44 ± 13.61 71.57 ± 12.23	-	119.93 ± 39.53	<u> </u>	49.69 ± 14.68	-	25.92 ± 9.49	-	< LOD < LOD	13.19	< LOD < LOD	9.81	< LOD < LOD	13.42
xrf 25	6429.97 ± 575.17	< LOD	1551.67 307.85 ± 33.93	-	62.99 ± 11.86	-	158.12 ± 38.94	_	23.41 ± 13.96	_	19.18 ± 9.13	-	< LOD	12.84	< LOD	9.13	< LOD	12.88
xrf 26	4861.96 ± 469.58	< LOD	1614.10 279.31 ± 35.60	-	55.33 ± 12.48	-	79.27 ± 40.20	-	29.73 ± 14.82	-	23.51 ± 9.72	-	< LOD	13.34	< LOD	10.21	< LOD	13.49
xrf 26	4639.29 ± 420.80	< LOD	1303.89 178.46 ± 32.90	-	20.02 ± 11.61	-	< LOD	56.30	< LOD	20.40	< LOD	13.38	< LOD	12.31	< LOD	9.20	< LOD	12.68
	15209.27 ± 681.54		- < LOD	43.49	< LOD	15.77	< LOD	50.22	< LOD	18.38	< LOD	11.88	< LOD	11.10	< LOD	8.09	< LOD	11.96
	11630.69 ± 611.64	< LOD	1340.15 110.79 ± 38.37	-	< LOD	20.68	< LOD	66.80	< LOD	24.67	< LOD < LOD	15.61	16.77 ± 10.43	12.00	< LOD < LOD	11.44	< LOD < LOD	15.69
xrf 29 xrf 30	12632.55 ± 730.53 9016.94 ± 513.92	< LOD < LOD	1791.72 163.87 ± 34.46 1333.20 125.92 ± 32.17	-	23.00 ± 12.24 < LOD	- 17.11	< LOD < LOD	59.26 54.58	27.70 ± 14.72 < LOD	20.23	< LOD	13.99 13.01	< LOD < LOD	13.08 12.34	< LOD < LOD	9.87 9.13	< LOD < LOD	13.63 12.25
	6554.75 ± 423.68	< LOD	986.69 270.93 ± 44.03	_	54.26 ± 15.52	-	106.05 ± 50.20	-	50.74 ± 18.74	-	23.42 ± 12.02	-	< LOD	17.22	< LOD	12.64	< LOD	17.49
xrf 32	16126.34 ± 792.56	< LOD	1537.80 144.16 ± 30.64	-	24.67 ± 10.94	-	< LOD	52.91	< LOD	19.53	< LOD	12.49	< LOD	11.65	< LOD	8.63	< LOD	11.82
xrf 33	13898.28 ± 875.56	< LOD	2052.17 66.72 ± 30.71	-	< LOD	16.57	< LOD	53.02	< LOD	19.64	< LOD	12.54	< LOD	11.58	< LOD	8.44	< LOD	11.52
xrf 34	9864.13 ± 618.52	< LOD	1850.73 221.00 ± 36.43	-	46.94 ± 12.91	-	68.81 ± 41.60	-	< LOD	22.93	< LOD	14.73	< LOD	14.10	< LOD	10.08	< LOD	13.78
	16170.21 ± 807.61	< LOD	1535.22 191.70 ± 32.01	-	26.62 ± 11.30	-	< LOD	54.42	20.94 ± 13.49	- 04.07	< LOD	13.08	< LOD	12.06	< LOD	9.07	< LOD	11.96
	7873.66 ± 522.32 10704.47 ± 606.78	< LOD < LOD	1400.93 153.85 ± 39.22 1516.80 219.81 ± 34.23	-	22.26 ± 13.98 48.95 ± 12.14	-	< LOD 61.86 ± 39.03	67.33	< LOD 32.15 ± 14.50	24.87	< LOD < LOD	15.99 13.97	< LOD < LOD	15.06 13.10	< LOD < LOD	11.13 9.60	< LOD < LOD	15.48 12.99
xrf 37	6831.58 ± 476.70		- 159.08 ± 37.79	-	36.64 ± 13.55	-	87.22 ± 44.08		32.15 ± 14.50 < LOD	23.91	< LOD < LOD	15.42	< LOD	14.74	< LOD	10.89	< LOD < LOD	14.22
	13812.27 ± 632.19	< LOD	1188.66 214.09 ± 36.29	-	41.65 ± 12.85	-	< LOD		27.72 ± 15.33	-	< LOD	14.71	< LOD	14.08	< LOD	10.15	< LOD	13.64
xrf 39	6066.33 ± 409.70	< LOD	1014.61 < LOD	41.68	< LOD	15.26	< LOD	48.78	< LOD	18.02	< LOD	11.43	< LOD	11.05	< LOD	7.77	< LOD	11.32
xrf 40	12834.02 ± 671.38	< LOD	1489.67 141.16 ± 33.71	-	18.11 ± 12.02	-	< LOD	58.47	21.99 ± 14.42	-	< LOD	14.03	< LOD	13.01	< LOD	9.76	< LOD	13.32
xrf 41	8891.10 ± 576.72		1430.39 144.88 ± 31.53	-	< LOD	16.77	< LOD	54.13	< LOD	19.97	< LOD	12.70	< LOD	11.71	< LOD	8.93	< LOD	12.59
	10206.75 ± 557.78		1185.77 215.34 ± 39.15	-	44.12 ± 13.90	-	96.54 ± 45.13	-	32.18 ± 16.60	-	< LOD	15.84	< LOD	15.16	< LOD	11.19	< LOD	15.03
	14096.59 ± 723.58 11583.29 ± 435.85		- < LOD - 224.01 ± 35.54	48.79	< LOD 56.55 ± 12.66	17.28	< LOD 107.01 ± 41.00	54.32	< LOD 38.39 ± 15.10	20.16	< LOD 18.21 ± 9.75	12.65	< LOD < LOD	11.46 13.42	< LOD 17.50 ± 7.17	8.70	< LOD < LOD	11.95 13.71
	19953.39 ± 832.87			43.09	< LOD	15.40	< LOD	48.75	< LOD	18.09	< LOD	11.61	< LOD	11.05	< LOD	8.23	< LOD	10.72
	7937.18 ± 459.08			-	46.77 ± 13.19		103.28 ± 42.88		48.59 ± 15.96	-	< LOD	15.11	< LOD	13.98	< LOD	10.45	< LOD	14.45
	10737.17 ± 608.99			-	62.69 ± 13.40		113.34 ± 43.38		37.11 ± 15.93	-	21.97 ± 10.35	-	< LOD	14.16	< LOD	10.67	< LOD	14.61
	13914.90 ± 671.53			-	39.47 ± 12.04	-	76.18 ± 39.02	-	30.51 ± 14.42	ì	< LOD	13.75	< LOD	13.08	< LOD	9.67	< LOD	12.79
	8552.55 ± 417.83	< LOD	837.27 435.32 ± 55.15	-	117.44 ± 19.37	-	288.39 ± 63.64		107.78 ± 23.74	- 01.07	44.12 ± 15.03	-	30.70 ± 14.36		22.53 ± 10.82	-	31.36 ± 15.25	
	14994.36 ± 709.43			-	< LOD	18.24	< LOD	58.48	< LOD	21.87	< LOD	13.70	< LOD	13.08	< LOD	9.68	< LOD	13.32
	9379.64 ± 494.73 13093.73 ± 643.79	1554.92 ± 838.75 < LOD	- 95.65 ± 33.81 1207.62 354.42 ± 37.10	-	< LOD 90.33 ± 13.01	18.14	< LOD 173.20 ± 42.30	58.29	< LOD 50.84 ± 15.50	21.50	< LOD 26.33 ± 10.01	13.62	< LOD < LOD	12.89 14.07	< LOD < LOD	9.69 10.41	< LOD 14.94 ± 9.73	13.59
	16470.63 ± 566.48		- 296.60 ± 37.76	-	48.99 ± 13.15	-	76.85 ± 42.41		31.12 ± 15.65	-	15.53 ± 10.01	-	< LOD	13.88	< LOD	10.41	< LOD	14.47
	21761.28 ± 799.41		1408.57 91.65 ± 30.62	-	18.84 ± 11.06	-	< LOD	53.70	22.03 ± 13.28	_	< LOD	12.57	< LOD	11.90	< LOD	8.98	< LOD	12.14
	15268.63 ± 736.26	< LOD	1528.89 < LOD	45.76	< LOD	16.60	< LOD	53.07	< LOD	19.57	< LOD	12.60	< LOD	11.94	< LOD	8.72	< LOD	11.44
	9494.12 ± 509.40			-	88.33 ± 15.25	-	165.83 ± 49.38		68.61 ± 18.42	-	< LOD	17.22	19.19 ± 11.19		< LOD	12.33	< LOD	16.36
	6022.77 ± 408.56		1106.94 144.06 ± 31.26	-	28.22 ± 11.18	-	< LOD	54.09	< LOD	20.00	< LOD	12.78	< LOD	11.99	< LOD	9.17	< LOD	12.26
	12009.13 ± 700.63 12880.78 ± 710.56		- 204.86 ± 33.02 1625.25 256.57 ± 33.88	-	29.50 ± 11.64 54.97 ± 11.94	-	< LOD 64.36 ± 38.30	56.34	29.50 ± 14.01	-	< LOD 16.49 ± 9.18	13.48	< LOD	12.70 12.65	< LOD < LOD	9.29	< LOD	12.58
	7371.71 ± 509.38		1510.38 192.76 ± 40.96	-	46.51 ± 14.64	-	87.43 ± 47.36	-	35.14 ± 14.25 < LOD	25.91	16.49 ± 9.18 < LOD	- 16.59	< LOD < LOD	15.65	12.35 ± 8.12	9.33	< LOD < LOD	12.45 15.50
	9839.40 ± 587.56	< LOD < LOD	1287.24 239.43 ± 35.77	-	36.14 ± 12.55	-	< LOD	60.57	27.81 ± 15.00	- 25.91	< LOD < LOD	14.51	< LOD	13.59	< LOD	9.86	< LOD	13.72
	17537.81 ± 867.5		- 506.73 ± 41.38	-	116.27 ± 14.22	-	210.61 ± 46.04	-	107.08 ± 17.53	-	38.96 ± 11.04	-	< LOD	15.32	18.79 ± 7.88	-	16.82 ± 10.59	
xrf 302	16066.42 ± 774.8	< LOD	1550.27 61.76 ± 29.8	-	< LOD	15.99	< LOD	51.70	< LOD	19.09	< LOD	12.26	< LOD	11.39	< LOD	8.55	< LOD	11.66
	14428.5 ± 695.13		1312.32 269.01 ± 32.64	-	64.36 ± 11.53	-	109.51 ± 37.3	-	62.95 ± 14.07	-	13.93 ± 8.81	_	< LOD	12.40	< LOD	9.29	< LOD	12.77
	4811.28 ± 288.29	< LOD	614.04 246.57 ± 42.48	-	32.85 ± 14.89	-	< LOD	71.38	60.2 ± 18.29	-	< LOD	16.71	< LOD	15.83	< LOD	11.66	< LOD	15.94
		1950.9 ± 1029.93	- 560.55 ± 43.5 - 283.06 ± 40.05	-	90.96 ± 14.6	-	165.46 ± 47.21 140.71 ± 45.99	-	83.83 ± 17.84	-	21.27 ± 11.11	-	< LOD	15.79	< LOD 16.05 ± 7.91	11.25	21.38 ± 11.2	15.20
	10579.67 ± 623.8 16329.59 ± 804.85	1803.28 ± 1052.11 < LOD	- 283.06 ± 40.05 1567.70 189.48 ± 32.85	-	61.28 ± 14.11 39.92 ± 11.69	-	61.29 ± 37.74	-	62.18 ± 17.16 29.8 ± 13.99	-	21.3 ± 10.89 < LOD	-	< LOD < LOD	15.08 12.61	16.05 ± 7.91 < LOD	9.19	< LOD < LOD	15.39 12.38
	11609.24 ± 653.32		1489.19 396.68 ± 38.47	-	83.58 ± 13.32	-	128.47 ± 42.87		51.70 ± 15.90	-	16.90 ± 10.12	-	< LOD	14.20	< LOD	10.50	< LOD	13.94
	000.02		1 = 90.11		10.02	l .	2.51											

1. All values in ppm

2. LOD: Limit of Detection

3. (\pm 2 Σ s.d.): Plus or minus two standard deviation

Table C6: QA/QC Marco digestion	compared to	standard digestion	technique	
		MOA015 0,1	MOA015 0.1 (duplicate)	%RPD ²
		947142.11	947142.17	
Total Recoverable Antimony	g/m ³	6.8	4.5	40.7%
Total Recoverable Arsenic	g/m ³	128	106	18.8%
Total Recoverable Cadmium	g/m ³	< 0.10	< 0.10	nc
Total Recoverable Chromium	g/m ³	11	10	9.5%
Total Recoverable Lead	g/m ³	38	35	8.2%
Total Recoverable Mercury	g/m ³	28	28	0.0%
Total Recoverable Nickel	g/m ³	1.02	1.07	-4.8%
Total Recoverable Zinc	g/m ³	105	96	9.0%

- 1. nc: Not Calculated
- 2. %RPD Relative Percent Difference

Table C7: Soil Gas R	eadings															
Sample Location	MOA 001	MOA 001	MOA 002	MOA 003	MOA 005	MOA 005	MOA 006	MOA 006	MOA007	MOA007	800 AOM	MOA 008	MOA009	MOA009	MOA010	MOA 011
Probe Depth (m)	0.5	0.8	wet	wet	0.5	1.0	0.5	0.8	0.5	1.0	0.5	1.0	0.5	1.0	0.5	1.0
LEL CH ₄					2.0%	Low Flow	2.0%	2.0%			1.0%	1.0%	2.0%	2.0%	1.0%	Low Flow
Peak CH ₄	0.0%	0.0%			0.1%	Low Flow	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	Low Flow
Peak CO ₂	1.5%	2.1%			3.2%	Low Flow	3.3%	3.3%	0.4%	8.2%	1.2%	1.3%	6.3%	9.3%	1.9%	Low Flow
Min O ₂	19.6%	18.9%			17.5%	Low Flow	18.2%	19.4%	19.8%	11.5%	19.8%	19.6%	16.8%	15.7%	19.3%	Low Flow
BAL	79.3%	79.1%			79.5%	Low Flow	80.1%	80.2%	79.7%	80.0%	79.3%	79.3%	76.7%	76.5%	79.6%	Low Flow
CO (ppm)		1			2	Low Flow	0	2	0	0	3	0	3	0	0	Low Flow
H ₂ (ppm)		0			0	Low Flow	0	0	0	0	0	0	0	0	0	Low Flow
H ₂ S (pmm)		0			0	Low Flow	0	0	0	0	0	0	0	0	0	Low Flow

1. Soft soils clogging gause = Low Flow

High water table >0.4m

Appendix DLab Reports and C.O.C.

R J Hill Laboratories Limited 1 Clyde Street Private Bag 3205

+64 7 858 2000 Tel +64 7 858 2001 Fax Email mail@hill-labs.co.nz Hamilton 3240, New Zealand | Web www.hill-labs.co.nz

ANALYSIS REPORT

Page 1 of 4

SUPv1

Client: Contact: Pattle Delamore Partners Ltd

Natalie Webster

C/- Pattle Delamore Partners Ltd

PO Box 9528 Newmarket **AUCKLAND 1149** Lab No: Date Registered: 947724

28-Oct-2011

Date Reported:

17-Nov-2011

46451

Quote No: Order No:

Client Reference: Submitted By:

AO2469100 Chris Foote

Sample Type: Soil	COLUMN TO THE REAL PROPERTY.	MOA001 0.1	MOA001 0.5	MOA001 1.0	MOA002 0.1
S	ample Name:	27-Oct-2011	27-Oct-2011	27-Oct-2011	27-Oct-2011
	Lab Number:	947724.1	947724.2	947724.3	947724.5
Individual Tests					
Dry Matter	g/100g as rcvd				68
Total Recoverable Antimony	mg/kg dry wt	0.70 ± 0.29	1.72 ± 0.41	6.7 ± 1.3	7.5 ± 1.4
Total Recoverable Arsenic	mg/kg dry wt	24.1 ± 2.8	95.6 ± 9.7	185 ± 19	65.5 ± 6.7
Total Recoverable Cadmium	mg/kg dry wt	0.185 ± 0.073	< 0.10 ± 0.067	< 0.10 ± 0.067	0.122 ± 0.068
Total Recoverable Chromium	mg/kg dry wt	48.3 ± 5.1	6.8 ± 1.5	8.7 ± 1.6	8.3 ± 1.6
Total Recoverable Copper	mg/kg dry wt	31.8 ± 4.7	35.4 ± 5.2	48.4 ± 6.9	21.6 ± 3.3
Total Recoverable Lead	mg/kg dry wt	33.4 ± 4.7	9.9 ± 1.5	6.9 ± 1.0	31.7 ± 4.5
Total Recoverable Mercury	mg/kg dry wt	0.334 ± 0.077	0.488 ± 0.088	2.24 ± 0.28	0.394 ± 0.08
Total Recoverable Zinc	mg/kg dry wt	83.6 ± 8.8	24.8 ± 3.7	27.2 ± 3.8	52.8 ± 5.9
Total Petroleum Hydrocarbons i	n Soil				
C7 - C9	mg/kg dry wt		* = 1		< 10 ± 5.5
C10 - C14	mg/kg dry wt	H			< 20 ± 7.8
C15 - C36	mg/kg dry wt	~		-	< 40 ± 9.5
Total hydrocarbons (C7 - C36)	mg/kg dry wt	- 4	-		< 70 ± 14
S	ample Name:	MOA002 0.5	MOA006 0.1	MOA006 0.5	MOA006 1.0
		27-Oct-2011	27-Oct-2011	27-Oct-2011	27-Oct-2011
	Lab Number:	947724.6	947724.8	947724.9	947724.10
Individual Tests					
Dry Matter	g/100g as rcvd	78		The state of the s	1247
Total Recoverable Antimony	mg/kg dry wt	1.68 ± 0.40	3.31 ± 0.65	2.14 ± 0.47	1.66 ± 0.40
Total Recoverable Arsenic	mg/kg dry wt	54.1 ± 5.6	39.4 ± 4.2	57.6 ± 6.0	36.9 ± 4.0
Total Recoverable Cadmium	mg/kg dry wt	$< 0.10 \pm 0.067$	0.364 ± 0.092	< 0.10 ± 0.067	< 0.10 ± 0.06
Total Recoverable Chromium	mg/kg dry wt	7.7 ± 1.6	12.0 ± 1.8	9.0 ± 1.6	5.8 ± 1.5
Total Recoverable Copper	mg/kg dry wt	26.4 ± 4.0	30.1 ± 4.5	23.8 ± 3.6	15.6 ± 2.6
Total Recoverable Lead	mg/kg dry wt	13.8 ± 2.0	35.2 ± 5.0	7.0 ± 1.1	5.16 ± 0.77
Total Recoverable Mercury	mg/kg dry wt	0.360 ± 0.079	0.63 ± 0.11	0.514 ± 0.091	0.82 ± 0.12
Total Recoverable Zinc	mg/kg dry wt	46.0 ± 5.4	99 ± 11	14.7 ± 3.1	6.8 ± 2.8
Total Petroleum Hydrocarbons i	n Soil				
C7 - C9	mg/kg dry wt	< 9 ± 5.4		+	
C10 - C14	mg/kg dry wt	< 20 ± 7.7		H	-
C15 - C36	mg/kg dry wt	$< 40 \pm 9.4$		*	
Total hydrocarbons (C7 - C36)	mg/kg dry wt	< 70 ± 14	-	H	3.00
S	ample Name:	MOA011 0.1	MOA011 0.5	MOA021 0.1	MOA021 0.5
		27-Oct-2011	27-Oct-2011	27-Oct-2011	27-Oct-2011
	Lab Number:	947724.11	947724.12	947724.13	947724.14
Individual Tests	4				
Dry Matter	g/100g as rcvd	н	84	85	85

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised.

The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked *, which aboratory are not accredited.

Sa	ample Name:	MOA011 0.1 27-Oct-2011	MOA011 0.5 27-Oct-2011	MOA021 0.1 27-Oct-2011	MOA021 0.5 27-Oct-2011
	Lab Number:	947724.11	947724.12	947724.13	947724.14
Individual Tests					
Total Recoverable Antimony	mg/kg dry wt	1.20 ± 0.34	1.18 ± 0.34	5.4 ± 1.1	7.2 ± 1.4
Total Recoverable Arsenic	mg/kg dry wt	25.2 ± 2.9	31.0 ± 3.4	87.0 ± 8.8	206 ± 21
Total Recoverable Cadmium	mg/kg dry wt	0.336 ± 0.089	0.306 ± 0.085	0.172 ± 0.072	< 0.10 ± 0.067
Total Recoverable Chromium	mg/kg dry wt	15.4 ± 2.1	15.0 ± 2.0	19.7 ± 2.4	9.7 ± 1.7
Total Recoverable Copper	mg/kg dry wt	35.6 ± 5.2	132 ± 19	62.4 ± 8.9	152 ± 22
Total Recoverable Lead	mg/kg dry wt	41.9 ± 5.9	29.5 ± 4.2	81 ± 12	67.8 ± 9.5
Total Recoverable Lead	mg/kg dry wt	0.64 ± 0.11	0.257 ± 0.073	0.92 ± 0.13	1.39 ± 0.18
		The state of the s	69.8 ± 7.5	138 ± 15	59.3 ± 6.5
Total Recoverable Zinc	mg/kg dry wt	99 ± 11	09.0 ± 7.5	130 I 13	39.3 ± 0.3
Polycyclic Aromatic Hydrocarbor				< 0.03 ± 0.0099	< 0.03 ± 0.0097
Acenaphthene	mg/kg dry wt				
Acenaphthylene	mg/kg dry wt			0.0311 ± 0.0072	0.0494 ± 0.008
Anthracene	mg/kg dry wt			0.052 ± 0.017	0.084 ± 0.026
Benzo[a]anthracene	mg/kg dry wt			0.245 ± 0.064	0.50 ± 0.13
Benzo[a]pyrene (BAP)	mg/kg dry wt			0.312 ± 0.025	0.513 ± 0.040
Benzo[b]fluoranthene + Benzo[j] fluoranthene	mg/kg dry wt			0.54 ± 0.12	1.03 ± 0.21
Benzo[g,h,i]perylene	mg/kg dry wt			0.353 ± 0.062	0.434 ± 0.075
Benzo[k]fluoranthene	mg/kg dry wt	-	-	0.204 ± 0.027	0.402 ± 0.052
Chrysene	mg/kg dry wt		-	0.237 ± 0.036	0.527 ± 0.079
Dibenzo[a,h]anthracene	mg/kg dry wt			0.072 ± 0.012	0.100 ± 0.015
Fluoranthene	mg/kg dry wt			0.592 ± 0.060	1.08 ± 0.11
Fluorene	mg/kg dry wt			< 0.03 ± 0.0074	< 0.03 ± 0.0073
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt			0.302 ± 0.029	0.423 ± 0.040
Naphthalene	mg/kg dry wt	-		< 0.14 ± 0.046	$< 0.14 \pm 0.045$
Phenanthrene	mg/kg dry wt	4		0.258 ± 0.037	0.505 ± 0.071
Pyrene	mg/kg dry wt	1	1	0.694 ± 0.090	1.00 ± 0.13
Total Petroleum Hydrocarbons in				0.000	
C7 - C9	mg/kg dry wt		< 8 ± 5.4	< 9 ± 5.4	-
C10 - C14	mg/kg dry wt		< 20 ± 7.6	< 20 ± 7.6	
C15 - C36	mg/kg dry wt	-	< 40 ± 9.3	67.9 ± 9.4	
Total hydrocarbons (C7 - C36)	mg/kg dry wt		< 70 ± 14	< 70 ± 14	
Sa	mple Name:	MOA021 1.0 27-Oct-2011	MOA012 0.5 27-Oct-2011	MOA012 0.1 27-Oct-2011	
	ab Number:	947724.15	947724.16	947724.17	
Individual Tests	ab Number.	811.0811.18		5.03-000	
Company Carlot	all 00g on roud	78	80	1	
ACCOUNT OF THE PARTY OF THE PAR	g/100g as rovd			160+020	
Total Recoverable Antimony	mg/kg dry wt	9.4 ± 1.8	2.67 ± 0.55	1.60 ± 0.39	
Total Recoverable Arsenic	mg/kg dry wt	270 ± 28	86.3 ± 8.8	34.9 ± 3.8	100
Total Recoverable Cadmium	mg/kg dry wt	< 0.10 ± 0.067	0.247 ± 0.079	< 0.10 ± 0.067	
Total Recoverable Chromium	mg/kg dry wt	7.2 ± 1.6	12.3 ± 1.9	13.6 ± 1.9	-
Total Recoverable Copper	mg/kg dry wt	59.0 ± 8.4	92 ± 13	38.2 ± 5.6	
Total Recoverable Lead	mg/kg dry wt	83 ± 12	119 ± 17	34.7 ± 4.9	2
Total Recoverable Mercury	mg/kg dry wt	6.27 ± 0.76	3.75 ± 0.46	0.570 ± 0.095	- 1
Total Recoverable Zinc	mg/kg dry wt	37.4 ± 4.6	161 ± 17	90.0 ± 9.4	
Polycyclic Aromatic Hydrocarbon	s Screening in Soi				
Acenaphthene	mg/kg dry wt	0.070 ± 0.021	H	-	
Acenaphthylene	mg/kg dry wt	0.545 ± 0.050	+	+	-
Anthracene	mg/kg dry wt	1.58 ± 0.48	4	-	-
Benzo(a)anthracene	mg/kg dry wt	3.9 ± 1.1		- 4	
Benzo[a]pyrene (BAP)	mg/kg dry wt	3.57 ± 0.28			- 2
Benzo[b]fluoranthene + Benzo[j]	mg/kg dry wt	3.93 ± 0.81	,	,	8
luoranthene					
African a lab alphanate and alphanate control of the second	mg/kg dry wt	1.95 ± 0.34		2	~
fluoranthene Benzo[g,h,i]perylene Benzo[k]fluoranthene	mg/kg dry wt mg/kg dry wt	1.95 ± 0.34 1.71 ± 0.22	*	3	- 1

Sample Type: Soil					
	Sample Name: Lab Number:	MOA021 1.0 27-Oct-2011 947724.15	MOA012 0.5 27-Oct-2011 947724.16	MOA012 0.1 27-Oct-2011 947724.17	
Polycyclic Aromatic Hydrocari	bons Screening in So	1			
Dibenzo[a,h]anthracene	mg/kg dry wt	0.412 ± 0.054	-		-
Fluoranthene	mg/kg dry wt	11.1 ± 1.2	4		4
Fluorene	mg/kg dry wt	0.306 ± 0.037		-	
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	1.87 ± 0.18			
Naphthalene	mg/kg dry wt	0.139 ± 0.046			-
Phenanthrene	mg/kg dry wt	9.3 ± 1.3		+	- 2
Pyrene	mg/kg dry wt	9.3 ± 1.2	*	4	
Total Petroleum Hydrocarbons	s in Soil				
C7 - C9	mg/kg dry wt	< 9 ± 5.4	< 9 ± 5.4	-	*
C10 - C14	mg/kg dry wt	< 20 ± 7.6	< 20 ± 7.7		
C15 - C36	mg/kg dry wt	115 ± 16	< 40 ± 9.4		-
Total hydrocarbons (C7 - C36) mg/kg dry wt	115 ± 18	< 70 ± 14		

The reported uncertainty is an expanded uncertainty with a level of confidence of approximately 95 percent (i.e. two standard deviations, calculated using a coverage factor of 2). Reported uncertainties are calculated from the performance of typical matrices, and do not include variation due to sampling.

For further information on uncertainty of measurement at Hill Laboratories, refer to the technical note on our website; www.hill-laboratories.com/files/Intro_To_UOM.pdf, or contact the laboratory.

Analyst's Comments

Appendix No.1 - Total Petroleum Hydrocarbon Chromatograms

SUMMARY OF METHODS

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Test	Method Description	Default Detection Limit	Samples
Environmental Solids Sample Preparation	Air dried at 35°C and sieved, <2mm fraction. Used for sample preparation. May contain a residual moisture content of 2-5%.		1-3, 5-6, 8-17
Polycyclic Aromatic Hydrocarbons Screening in Soil	Sonication extraction, Dilution or SPE cleanup (if required), GC-MS SIM analysis (modified US EPA 8270). Tested on as received sample.	.5	13-15
Total Petroleum Hydrocarbons in Soil	Sonication extraction in DCM, Silica cleanup, GC-FID analysis US EPA 8015B/MfE Petroleum Industry Guidelines. Tested on as received sample	*	5-6, 12-13 15-16
Dry Matter (Env)	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. US EPA 3550.	0.10 g/100g as rcvd	5-6, 12-16
Total Recoverable digestion	Nitric / hydrochloric acid digestion. US EPA 200.2.		1-3, 5-6, 8-17
Total Recoverable Antimony	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.4 mg/kg dry wt	1-3, 5-6, 8-17
Total Recoverable Arsenic	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	2 mg/kg dry wt	1-3, 5-6, 8-17
Total Recoverable Cadmium	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.10 mg/kg dry wt	1-3, 5-6, 8-17
Total Recoverable Chromium	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	2 mg/kg dry wt	1-3, 5-6, 8-17
Total Recoverable Copper	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	2 mg/kg dry wt	1-3, 5-6, 8-17
Total Recoverable Lead	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.4 mg/kg dry wt	1-3, 5-6, 8-17
Total Recoverable Mercury	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.10 mg/kg dry wt	1-3, 5-6, 8-17

Sample Type: Soil					
Test	Method Description	Default Detection Limit	Samples		
Total Recoverable Zinc	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	4 mg/kg dry wt	1-3, 5-6, 8-17		

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

This report must not be reproduced, except in full, without the written consent of the signatory.

Ara Heron BSc (Tech)

Client Services Manager - Environmental Division

R J Hill Laboratories Limited 1 Clyde Street Private Bag 3205

+64 7 858 2000 Fax +64 7 858 2001 Email mail@hill-labs.co.nz Hamilton 3240, New Zealand | Web www.hill-labs.co.nz

NALYSIS REPORT

Page 1 of 3

SPv3

Client: Contact: Pattle Delamore Partners Ltd

Natalie Webster

C/- Pattle Delamore Partners Ltd

PO Box 9528 Newmarket **AUCKLAND 1149** Lab No:

947724

28-Oct-2011 **Date Registered:** 18-Nov-2011

Date Reported: 46451 Quote No:

Order No:

AO2469100

Client Reference: Submitted By:

Chris Foote

Amended Repor

This report replaces an earlier report issued on the 11 Nov 2011 at 1:12 pm At the client's request, a thallium result has been added to sample

	Sample Name:	MOA001 0.1	MOA001 0.5	MOA001 1.0	MOA002 0.1	MOA002 0.
		27-Oct-2011	27-Oct-2011	27-Oct-2011	27-Oct-2011	27-Oct-201
1-4-14	Lab Number:	947724.1	947724.2	947724.3	947724.5	947724.6
Individual Tests						
Dry Matter	g/100g as rcvd				68	78
Total Recoverable Antimony	mg/kg dry wt	0.7	1.7	6.7	7.5	1.7
Total Recoverable Arsenic	mg/kg dry wt	24	96	185	65	54
Total Recoverable Cadmium	mg/kg dry wt	0.18	< 0.10	< 0.10	0.12	< 0.10
Total Recoverable Chromium	mg/kg dry wt	48	7	9	8	8
Total Recoverable Copper	mg/kg dry wt	32	35	48	22	26
Total Recoverable Lead	mg/kg dry wt	33	9.9	6.9	32	13.8
Total Recoverable Mercury	mg/kg dry wt	0.33	0.49	2.2	0.39	0.36
Total Recoverable Zinc	mg/kg dry wt	84	25	27	53	46
Total Petroleum Hydrocarbons	in Soil					
C7 - C9	mg/kg dry wt	-	-		< 10	< 9
C10 - C14	mg/kg dry wt				< 20	< 20
C15 - C36	mg/kg dry wt		4		< 40	< 40
Total hydrocarbons (C7 - C36)	mg/kg dry wt				< 70	< 70
	Sample Name:	MOA006 0.1 27-Oct-2011	MOA006 0.5 27-Oct-2011	MOA006 1.0 27-Oct-2011	MOA011 0.1 27-Oct-2011	MOA011 0.5 27-Oct-2011
	Lab Number:	947724.8	947724.9	947724.10	947724.11	947724.12
Individual Tests						
Dry Matter	g/100g as rcvd		-			84
Total Recoverable Antimony	mg/kg dry wt	3.3	2.1	1.7	1.2	1.2
Total Recoverable Arsenic	mg/kg dry wt	39	58	37	25	31
Total Recoverable Cadmium	mg/kg dry wt	0.36	< 0.10	< 0.10	0.34	0.31
Total Recoverable Chromium	mg/kg dry wt	12	9	6	15	15
Total Recoverable Copper	mg/kg dry wt	30	24	16	36	132
Total Recoverable Lead	mg/kg dry wt	35	7.0	5.2	42	30
Total Recoverable Mercury	mg/kg dry wt	0.63	0.51	0.82	0.64	0.26
Total Recoverable Zinc	mg/kg dry wt	99	15	7	99	70
Total Petroleum Hydrocarbons	in Soil					Unc
C7 - C9	mg/kg dry wt	12				< 8
C10 - C14	mg/kg dry wt		l I i		2	< 20
C15 - C36	mg/kg dry wt					< 40
Total hydrocarbons (C7 - C36)	mg/kg dry wt					< 70

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised.

The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked *, which laboratory are not accredited.

Sa	mple Name:	MOA021 0.1 27-Oct-2011	MOA021 0.5 27-Oct-2011	MOA021 1.0 27-Oct-2011	MOA012 0.5 27-Oct-2011	MOA012 0.1 27-Oct-2011
	ab Number:	947724.13	947724.14	947724.15	947724.16	947724.17
Individual Tests	ao mamber.		1			
Dry Matter	g/100g as rovd	85	85	78	80	-
Total Recoverable Antimony	mg/kg dry wt	5.4	7.2	9.4	2.7	1.6
Total Recoverable Arsenic	mg/kg dry wt	87	210	270	86	35
Total Recoverable Cadmium	mg/kg dry wt	0.17	< 0.10	< 0.10	0.25	< 0.10
Total Recoverable Chromium	mg/kg dry wt	20	10	7	12	14
Total Recoverable Copper	mg/kg dry wt	62	152	59	92	38
Total Recoverable Lead	mg/kg dry wt	81	68	83	119	35
Total Recoverable Mercury	mg/kg dry wt	0.92	1.39	6.3	3.8	0.57
Total Recoverable Thallium	mg/kg dry wt			1.9		-
Total Recoverable Zinc	mg/kg dry wt	138	59	37	161	90
Polycyclic Aromatic Hydrocarbon	s Screening in Sc	oil				
Acenaphthene	mg/kg dry wt	< 0.03	< 0.03	0.07		-
Acenaphthylene	mg/kg dry wt	0.03	0.05	0.55		
Anthracene	mg/kg dry wt	0.05	80.0	1.58	-	+
Benzo[a]anthracene	mg/kg dry wt	0.24	0.50	3.9		
Benzo[a]pyrene (BAP)	mg/kg dry wt	0.31	0.51	3.6	-	-
Benzo[b]fluoranthene + Benzo[j] fluoranthene	mg/kg dry wt	0.54	1.03	3.9	•	-
Benzo[g,h,i]perylene	mg/kg dry wt	0.35	0.43	1.95	-	-
Benzo[k]fluoranthene	mg/kg dry wt	0.20	0.40	1.71		-
Chrysene	mg/kg dry wt	0.24	0.53	2.7	-	-
Dibenzo[a,h]anthracene	mg/kg dry wt	0.07	0.10	0.41	•	-
Fluoranthene	mg/kg dry wt	0.59	1.08	11.1	-	•
Fluorene	mg/kg dry wt	< 0.03	< 0.03	0.31		-
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	0.30	0.42	1.87	5	÷
Naphthalene	mg/kg dry wt	< 0.14	< 0.14	0.14		-
Phenanthrene	mg/kg dry wt	0.26	0.50	9.3	•	+
Pyrene	mg/kg dry wt	0.69	1.00	9.3	-	
Total Petroleum Hydrocarbons in	Soil			.,),		
C7 - C9	mg/kg dry wt	< 9		< 9	< 9	-
C10 - C14	mg/kg dry wt	< 20		< 20	< 20	-
C15 - C36	mg/kg dry wt	68		115	< 40	
Total hydrocarbons (C7 - C36)	mg/kg dry wt	< 70		115	< 70	-

Analyst's Comments

Appendix No.1 - Total Petroleum Hydrocarbon Chromatograms

SUMMARY OF METHODS

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Sample Type: Soil						
Test	Method Description	Default Detection Limit	Samples 1-3, 5-6, 8-17			
Environmental Solids Sample Preparation	Air dried at 35°C and sieved, <2mm fraction. Used for sample preparation. May contain a residual moisture content of 2-5%.	-				
Polycyclic Aromatic Hydrocarbons Screening in Soil	Sonication extraction, Dilution or SPE cleanup (if required), GC-MS SIM analysis (modified US EPA 8270). Tested on as received sample.		13-15			
Total Petroleum Hydrocarbons in Soll	Sonication extraction in DCM, Silica cleanup, GC-FID analysis US EPA 8015B/MfE Petroleum Industry Guidelines. Tested on as received sample		5-6, 12-13 15-16			
Dry Matter (Env)	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. US EPA 3550.	0.10 g/100g as rcvd	5-6, 12-16			
Total Recoverable digestion	Nitric / hydrochloric acid digestion. US EPA 200.2.		1-3, 5-6, 8-17			
Total Recoverable Antimony	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.4 mg/kg dry wt	1-3, 5-6, 8-17			

Test	Method Description	Default Detection Limit	Samples
Total Recoverable Arsenic	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	2 mg/kg dry wt	1-3, 5-6, 8-17
Total Recoverable Cadmium	Dried sample, sleved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.10 mg/kg dry wt	1-3, 5-6, 8-17
Total Recoverable Chromium	Dried sample, sleved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	2 mg/kg dry wt	1-3, 5-6, 8-17
Total Recoverable Copper	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	2 mg/kg dry wt	1-3, 5-6, 8-17
Total Recoverable Lead	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.4 mg/kg dry wt	1-3, 5-6, 8-17
Total Recoverable Mercury	Dried sample, sleved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.10 mg/kg dry wt	1-3, 5-6, 8-17
Total Recoverable Thallium	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.2 mg/kg dry wt	15
Total Recoverable Zinc	Dried sample, sleved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	4 mg/kg dry wt	1-3, 5-6, 8-17

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

This report must not be reproduced, except in full, without the written consent of the signatory.

Ara Heron BSc (Tech)

Client Services Manager - Environmental Division

Request for Analyses

NOTE: Please acknowledge receipt of these samples by signing this form and emailing to submitter.

W W

ATTLE DELAMONE PAR	CINERS L	10		Same and the comment	1.07/42_17/57
From: Pattle Delamo	f sheet):	DP	DP Auckland □ PDP Wellington □ PDP Christchurch	To: 16/15 Las, Quote No.: 46451	
Submitted by: Chris		e	Ph No.:	PDP Job No.: 102459100	
Chain of Custody I	Record				
Sent:		are and a second	Received: ☐ Room temp. ☐ Chilled Temp.: 12-3	C Notes:	011 2 03 55 pm
Name: Chris Food	و		Name: Grea B	John 10 947	724
Signature: Crock	2		Signature: Jun O MM	No of Samples 17	No of Fractions 32
Date and time: 28/10	/11 8	30gr	Date and time: OCT 28 PM1:45		
Results by: Ema	il submitte	c Chr	is, Fock @pdp.co.nz E Mail (address b	elow) Priority: Normal C	High □ Urgent
Ŭ Ema	il other:	Wat	aile, Wcskv @pdp.co.nz 🗆 Fax (number be	low) Results required by:	//
Invoice to: PDP	7	☐ Oth	er:		
Sample ID	Sample type	No. bottles	Analyses requested		Notes
1.0 100AON	S	7	HOLD COLD		
MOADO1 0.5	2	2			
MUADO) 1.0	_S	2	· I		
MOADOI 1.5	S	2	'I		
MO14602 011	S	2	11		
MOA002 05	S	2	11		
P. 0 200AOM	S	2	11		
MGAOGOOI	5	2	- 11		
MCA0060-5	2	2	11		
MOADOSIO	S	2			
MCA 011 0.1	5	要1	- Iv		
MOADLI 0.5	S	录丨	l)		
MOAOZI O.1	5	2	1)		
MCA021 0.5	5	2			
MOAU21 1.0	S	2	Λ		
MOA012 05	2	2	Ч		
MOAGIZ 0.1	2	2	· (
	V				
Sample type: S Soil	diment	GW Gro		EACH Leachate GEO Geothermal	
	A87.40.7		TW Westewater	P Potable Other:	

Note: Samples may contain dangerous or hazardous substances

Page 1 of 1

R J Hill Laboratories Limited
1 Clyde Street
Private Bag 3205
Hamilton 3240, New Zealand
Web

Tel +64 7 858 2000 Fax +64 7 858 2001 Email mail@hill-labs.co.nz Web www.hill-labs.co.nz

ANALYSIS REPORT

Page 1 of 4

SUPv2

Client: Contact: Pattle Delamore Partners Ltd

Natalie Webster

C/- Pattle Delamore Partners Ltd

PO Box 9528 Newmarket AUCKLAND 1149 Lab No:

947721

28-Oct-2011

Date Registered: Date Reported:

18-Nov-2011

46451

Quote No: Order No:

AO2469100

Client Reference: Submitted By:

Chris Foote

Amended Report

This report replaces an earlier report issued on the 17 Nov 2011 at 10:29 am At the client's request, thallium results have been added to samples 947721.2,5 & 17.

Sample Type: Soil					
s	Sample Name:	MOA007 0.1 27-Oct-2011	MOA007 0.5 27-Oct-2011	MOA007 1.0 27-Oct-2011	MOA022 0.1 27-Oct-2011
	Lab Number:	947721.1	947721.2	947721.3	947721.4
Individual Tests					
Dry Matter	g/100g as rcvd	85	80	75	
Total Recoverable Antimony	mg/kg dry wt	0.61 ± 0.28	3.03 ± 0.61	3.96 ± 0.76	9.1 ± 1.7
Total Recoverable Arsenic	mg/kg dry wt	24.0 ± 2.8	166 ± 17	139 ± 15	113 ± 12
Total Recoverable Cadmium	mg/kg dry wt	0.210 ± 0.075	< 0.10 ± 0.067	0.185 ± 0.073	0.391 ± 0.096
Total Recoverable Chromium	mg/kg dry wt	15.3 ± 2.1	28.1 ± 3.2	15.3 ± 2.1	11.7 ± 1.8
Total Recoverable Copper	mg/kg dry wt	24.9 ± 3.8	37.1 ± 5.4	34.0 ± 5.0	44.2 ± 6.4
Total Recoverable Lead	mg/kg dry wt	50.8 ± 7.2	18.0 ± 2.6	36.3 ± 5.1	106 ± 15
Total Recoverable Mercury	mg/kg dry wt	0.398 ± 0.082	1.14 ± 0.16	0.572 ± 0.095	2.46 ± 0.31
Total Recoverable Thallium	mg/kg dry wt		1.41 ± 0.22	-	
Total Recoverable Zinc	mg/kg dry wt	115 ± 12	38.5 ± 4.7	117 ± 13	172 ± 18
Total Petroleum Hydrocarbons i	in Soil	1007			
C7 - C9	mg/kg dry wt	< 8 ± 5.4	< 9 ± 5.4	< 10 ± 5.5	
C10 - C14	mg/kg dry wt	< 20 ± 7.6	< 20 ± 7.6	< 20 ± 7.8	
C15 - C36	mg/kg dry wt	< 40 ± 9.3	< 40 ± 9.4	< 40 ± 9.5	-
Total hydrocarbons (C7 - C36)	mg/kg dry wt	< 70 ± 14	< 70 ± 14	< 70 ± 14	
s	ample Name:	MOA022 0.5 27-Oct-2011	MOA022 1.0 27-Oct-2011	MOA005 0.1 27-Oct-2011	MOA005 0.5 27-Oct-2011
	Lab Number:	947721.5	947721.6	947721.7	947721.8
Individual Tests					
Dry Matter	g/100g as rovd	-	83		83
Total Recoverable Antimony	mg/kg dry wt	11.9 ± 2.2	72	3.09 ± 0.62	6.8
Total Recoverable Arsenic	mg/kg dry wt	204 ± 21	370	74.8 ± 7.6	128
Total Recoverable Cadmium	mg/kg dry wt	0.308 ± 0.085	1.48	0.169 ± 0.072	< 0.10
Total Recoverable Chromium	mg/kg dry wt	8.5 ± 1.6	2	18.0 ± 2.3	11
Total Recoverable Copper	mg/kg dry wt	66.2 ± 9.4	97	35.0 ± 5.1	38
Total Recoverable Lead	mg/kg dry wt	350 ± 50	290	64.7 ± 9.1	28
Total Recoverable Mercury	mg/kg dry wt	5.18 ± 0.63	21	1.28 ± 0.17	1.02
Total Recoverable Thallium	mg/kg dry wt	1.64 ± 0.24		1	
Total Recoverable Zinc	mg/kg dry wt	150 ± 16	360	153 ± 16	105
Total Petroleum Hydrocarbons i	n Soll				
C7 - C9	mg/kg dry wt	-	< 9 ± 5.4		< 8 ± 5.4
C10 - C14	mg/kg dry wt		< 20 ± 7.7		< 20 ± 7.6
C15 - C36	mg/kg dry wt	-	< 40 ± 9.4		< 40 ± 9.3
Total hydrocarbons (C7 - C36)	mg/kg dry wt	2	< 70 ± 14		< 70 ± 14

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised.

The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked *, which laboratory are not accredited.

	Sample Name:	MOA005 1.5 27-Oct-2011	MOA003 0.1 27-Oct-2011	MOA003 0.5 27-Oct-2011	MOA003 1.0 27-Oct-2011
	Lab Number:	947721.10	947721.11	947721.12	947721.13
Individual Tests	Lab Humber.	211141119	× 77 11.1	F E/11 () = 11/15	1 - 11 4 10 10 11
	-400	70			
Dry Matter	g/100g as rcvd	73	4 50 . 000	407.000	207 + 0.64
Total Recoverable Antimony	mg/kg dry wt	18.0	1.58 ± 0.39	1.07 ± 0.33	3.07 ± 0.61
Total Recoverable Arsenic	mg/kg dry wt	290	29.7 ± 3.3	40.9 ± 4.3	66.2 ± 6.8
Total Recoverable Cadmium	mg/kg dry wt	0.40 #1	0.261 ± 0.080	< 0.10 ± 0.067	< 0.10 ± 0.06
Total Recoverable Chromium	mg/kg dry wt	25 #1	17.4 ± 2.2	5.0 ± 1.5	8.5 ± 1.6
Total Recoverable Copper	mg/kg dry wt	83	33.9 ± 5.0	22.5 ± 3.5	53.0 ± 7.6
Total Recoverable Lead	mg/kg dry wt	189	91 ± 13	10.9 ± 1.6	9.1 ± 1.4
Total Recoverable Mercury	mg/kg dry wt	3.7	0.282 ± 0.074	0.407 ± 0.082	0.170 ± 0.069
Total Recoverable Zinc	mg/kg dry wt	210	153 ± 16	11.8 ± 2.9	12.3 ± 3.0
Total Petroleum Hydrocarbons	in Soil				
C7 - C9	mg/kg dry wt	< 9 ± 5.4	-		
C10 - C14	mg/kg dry wt	< 20 ± 7.7	÷		
C15 - C36	mg/kg dry wt	< 40 ± 9.4		-	-
Total hydrocarbons (C7 - C36)	mg/kg dry wt	< 70 ± 14		1	-
	Sample Name:	MOA022 1.5 27-Oct-2011	MOA026 0.1 27-Oct-2011	MOA005 0.5 (duplicate)	
	Lab Number:	947721.16	947721.17	947721.18	
Individual Tests					
Dry Matter	a/100a aa raud		89		-
	g/100g as rovd		10.1 ± 1.9	4.47 ± 0.85	
Total Recoverable Antimony	mg/kg dry wt				
Total Recoverable Arsenic	mg/kg dry wt	-	135 ± 14	106 ± 11	
Total Recoverable Cadmium	mg/kg dry wt	-	0.233 ± 0.077	< 0.10 ± 0.067	
Total Recoverable Chromium	mg/kg dry wt		14.2 ± 2.0	10.3 ± 1.7	
Total Recoverable Copper	mg/kg dry wt	-	137 ± 20	35.3 ± 5.2	-
Total Recoverable Lead	mg/kg dry wt		121 ± 17	27.6 ± 3.9	*
Total Recoverable Mercury	mg/kg dry wt		4.82 ± 0.59	1.07 ± 0.15	
Total Recoverable Thallium	mg/kg dry wt	-	1.10 ± 0.19	*	
Total Recoverable Zinc	mg/kg dry wt		183 ± 19	96 ± 10	
Metals extensive suite, screen l	level (33 metals)				
Total Recoverable Aluminium	mg/kg dry wt	1,480 ± 180	-		
Total Recoverable Antimony	mg/kg dry wt	44.9 ± 8.1	4	4	-
Total Recoverable Arsenic	mg/kg dry wt	920 ± 93			-
Total Recoverable Barium	mg/kg dry wt	206 ± 13			
Total Recoverable Bismuth	mg/kg dry wt	< 0.4 ± 0.27		-	
Total Recoverable Boron	mg/kg dry wt	< 20 ± 14			14.
Total Recoverable Cadmium	mg/kg dry wt	2.81 ± 0.52			-
Total Recoverable Caesium	mg/kg dry wt	5.77 ± 0.60			-
Total Recoverable Calcium	mg/kg dry wt	275 ± 76			4
Total Recoverable Chromium	mg/kg dry wt	<2±1.4	1		-
Total Recoverable Cobalt	mg/kg dry wt	7.4 ± 1.1		1	
Total Recoverable Copper	mg/kg dry wt	361 ± 51		-	
Total Recoverable Iron	mg/kg dry wt	27,700 ± 2,800	-	1	1
	And the Control of th	2.30 ± 0.23		-	
Total Recoverable Lanthanum	mg/kg dry wt	2.30 ± 0.23	- :		
Total Recoverable Lead	mg/kg dry wt				
Total Recoverable Lithium	mg/kg dry wt	< 0.4 ± 0.27			
Total Recoverable Magnesium	mg/kg dry wt	76 ± 28		•	
otal Recoverable Manganese	mg/kg dry wt	33.3 ± 3.4	•	-	
Total Recoverable Mercury	mg/kg dry wt	24.4 ± 3.0			-
Total Recoverable Molybdenum		17.0 ± 3.1			5
Total Recoverable Nickel	mg/kg dry wt	4.3 ± 1.5			-
Total Recoverable Phosphorus	mg/kg dry wt	56 ± 27		5	
Total Recoverable Potassium*	mg/kg dry wt	790 ± 130	*		+
Total Recoverable Rubidium	mg/kg dry wt	5.73 ± 0.64		-	7
Total Recoverable Selenium	mg/kg dry wt	< 20 ± 14		-	

Sample Type: Soil					
S	ample Name:	MOA022 1.5 27-Oct-2011	MOA026 0.1 27-Oct-2011	MOA005 0.5 (duplicate)	
	Lab Number:	947721.16	947721.17	947721.18	
Metals extensive suite, screen le	evel (33 metals)				
Total Recoverable Sodium	mg/kg dry wt	< 40 ± 27			-
Total Recoverable Strontium	mg/kg dry wt	4.02 ± 0.78		+	
Total Recoverable Thallium	mg/kg dry wt	5.72 ± 0.70			
Total Recoverable Tin	mg/kg dry wt	< 1.0 ± 0.67	-	A	2
Total Recoverable Uranium	mg/kg dry wt	< 0.10 ± 0.067	-		-
Total Recoverable Vanadium	mg/kg dry wt	< 100 ± 67		9	4
Total Recoverable Zinc	mg/kg dry wt	447 ± 45			
Total Petroleum Hydrocarbons in	n Soil				
C7 - C9	mg/kg dry wt		< 8 ± 5.4	-	
C10 - C14	mg/kg dry wt	-	< 20 ± 7.6		
C15 - C36	mg/kg dry wt	4	56.6 ± 9.6		4
Total hydrocarbons (C7 - C36)	mg/kg dry wt		< 70 ± 14		

The reported uncertainty is an expanded uncertainty with a level of confidence of approximately 95 percent (i.e. two standard deviations, calculated using a coverage factor of 2). Reported uncertainties are calculated from the performance of typical matrices, and do not include variation due to sampling.

For further information on uncertainty of measurement at Hill Laboratories, refer to the technical note on our website: www.hill-laboratories.com/files/Intro_To_UOM.pdf, or contact the laboratory.

Analyst's Comments

#1 It should be noted that the replicate analyses performed on this sample as part of our in-house Quality Assurance procedures showed greater variation than would normally be expected. This may reflect the heterogeneity of the sample.

Appendix No.1 - Total Petroleum Hydrocarbon Chromatograms

SUMMARY OF METHODS

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Test	Method Description	Default Detection Limit	Samples
Environmental Solids Sample Preparation	Air dried at 35°C and sieved, <2mm fraction. Used for sample preparation. May contain a residual moisture content of 2-5%.		1-5, 7, 11-13, 16-18
Environmental Solids Sample Preparation	Air dried at 35°C.		6, 8, 10
Metals extensive suite, screen level (33 metals)*	Dried sample, <2mm fraction. Nitric/Hydrochloric acid digestion, ICP-MS, screen level.		16
Total Petroleum Hydrocarbons in Soil	Sonication extraction in DCM, Silica cleanup, GC-FID analysis US EPA 8015B/MfE Petroleum Industry Guidelines. Tested on as received sample	•	1-3, 6, 8, 10, 17
Dry Matter (Env)	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. US EPA 3550.	0.10 g/100g as rcvd	1-3, 6, 8, 10, 17
Macro Total Recoverable digestion	Nitric / hydrochloric acid digestion. US EPA 200.2.		6, 8, 10
Total Recoverable digestion	Nitric / hydrochloric acid digestion. US EPA 200.2.		1-5, 7, 11-13, 16-18
Total Recoverable Antimony	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.4 mg/kg dry wt	1-5, 7, 11-13, 17-18
Total Recoverable Antimony	Dried sample, Nitric/Hydrochloric acid digestion, ICP-MS, screen level.	0.4 mg/kg dry wt	6, 8, 10
Total Recoverable Arsenic	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	2 mg/kg dry wt	1-5, 7, 11-13, 17-18
Total Recoverable Arsenic	Dried sample, Nitric/Hydrochloric acid digestion, ICP-MS, screen level.	2 mg/kg dry wt	6, 8, 10
Total Recoverable Cadmium	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.10 mg/kg dry wt	1-5, 7, 11-13, 17-18

Test	Method Description	Default Detection Limit	Samples
Total Recoverable Cadmium	Dried sample, Nitric/Hydrochloric acid digestion, ICP-MS, screen level.	0.10 mg/kg dry wt	6, 8, 10
Total Recoverable Chromium	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acld digestion, ICP-MS, screen level. US EPA 200.2.	2 mg/kg dry wt	1-5, 7, 11-13, 17-18
Total Recoverable Chromium	Dried sample, Nitric/Hydrochloric acid digestion, ICP-MS, screen level.	2 mg/kg dry wt	6, 8, 10
Total Recoverable Copper	Dried sample, sleved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	2 mg/kg dry wt	1-5, 7, 11-13, 17-18
Total Recoverable Copper	Dried sample, Nitric/Hydrochloric acid digestion, ICP-MS, screen level.	2 mg/kg dry wt	6, 8, 10
Total Recoverable Lead	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.4 mg/kg dry wt	1-5, 7, 11-13, 17-18
Total Recoverable Lead	Dried sample, Nitric/Hydrochloric acid digestion, ICP-MS, screen level.	0.4 mg/kg dry wt	6, 8, 10
Total Recoverable Mercury	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.10 mg/kg dry wt	1-5, 7, 11-13, 17-18
Total Recoverable Mercury	Dried sample, Nitric/Hydrochloric acid digestion, ICP-MS, screen level.	0.10 mg/kg dry wt	6, 8, 10
Total Recoverable Thallium	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.2 mg/kg dry wt	2, 5, 17
Total Recoverable Zinc	Dried sample, sleved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	4 mg/kg dry wt	1-5, 7, 11-13, 17-18
Total Recoverable Zinc	Dried sample, Nitric/Hydrochloric acid digestion, ICP-MS, screen level.	4 mg/kg dry wt	6, 8, 10

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

This report must not be reproduced, except in full, without the written consent of the signatory.

Ara Heron BSc (Tech)

Client Services Manager - Environmental Division

R J Hill Laboratories Limited 1 Clyde Street Private Bag 3205

Hamilton 3240, New Zealand

+64 7 858 2000 Tel +64 7 858 2001 Fax Email mail@hill-labs.co.nz Web www.hill-labs.co.nz

NALYSIS REPORT

Page 1 of 4

SPv6

Client: Contact:

Pattle Delamore Partners Ltd

Natalie Webster

C/- Pattle Delamore Partners Ltd

PO Box 9528 Newmarket **AUCKLAND 1149**

Lab No: **Date Registered:** 28-Oct-2011 Date Reported: Quote No:

18-Nov-2011 46451

Client Reference: Submitted By:

Order No:

AO2469100 Chris Foote

947721

Amended Report

This report replaces an earlier report issued on the 16 Nov 2011 at 1:28 pm At the client's request, thallium results have been added to samples 947721.2,5 & 17.

	Sample Name:	MOA007 0.1 27-Oct-2011	MOA007 0.5	MOA007 1.0	MOA022 0.1	MOA022 0.5
	Lab Number:	947721.1	27-Oct-2011 947721.2	27-Oct-2011 947721.3	27-Oct-2011 947721.4	27-Oct-2011 947721.5
Individual Tests	Lab Number.	047721.1	547721.2	547721.5	54//21.4	94/721.5
Dry Matter	g/100g as rovd	85	80	75		-
Total Recoverable Antimony	mg/kg dry wt	0.6	3.0	4.0	9.1	11.9
Total Recoverable Arsenic	mg/kg dry wt	24	166	139	113	200
Total Recoverable Cadmium	mg/kg dry wt	0.21	< 0.10	0.18	0.39	
Total Recoverable Chromium	mg/kg dry wt	15	28	15	12	0.31
Total Recoverable Copper	mg/kg dry wt	25	37	34	44	66
Total Recoverable Lead	mg/kg dry wt	51	18.0	36		
Total Recoverable Mercury		The state of the s	2/2/2		106	350
Total Recoverable Thallium	mg/kg dry wt	0.40	1.14	0.57	2.5	5.2
Total Recoverable Zinc	mg/kg dry wt	115	1.4	440	470	1.6
A CARLO DA REALEMENT PORT	mg/kg dry wt	115	38	117	172	150
Total Petroleum Hydrocarbons	THE COUNTY OF TH					
C7 - C9	mg/kg dry wt	< 8	< 9	< 10		-
C10 - C14	mg/kg dry wt	< 20	< 20	< 20		*
C15 - C36	mg/kg dry wt	< 40	< 40	< 40	-	-
Total hydrocarbons (C7 - C36)	mg/kg dry wt	< 70	< 70	< 70		
8	Sample Name:	MOA022 1.0 27-Oct-2011 947721.6	MOA005 0.1 27-Oct-2011 947721.7	MOA005 0.5 27-Oct-2011 947721.8	MOA005 1.5 27-Oct-2011	MOA003 0.1 27-Oct-2011
Individual Tests	Lab Number:	947721.0	94/721./	947721,8	947721.10	947721.11
Dry Matter	=400= == == 4	00				
Total Recoverable Antimony	g/100g as rovd	83	-	83	73	
Total Recoverable Antimony	mg/kg dry wt	72	3.1	6.8	18.0	1.6
	mg/kg dry wt	370	75	128	290	30
Total Recoverable Cadmium Total Recoverable Chromium	mg/kg dry wt	1.48	0.17	< 0.10	0.40 #1	0.26
Total Recoverable Copper	mg/kg dry wt	2	18	11	25#1	17
Total Recoverable Copper	mg/kg dry wt	97	35	38	83	34
Total Recoverable Mercury	mg/kg dry wt	290	65	28	189	91
Total Recoverable Zinc	mg/kg dry wt	21	1.28	1.02	3.7	0.28
1 1 / William Transfer and Control	mg/kg dry wt	360	153	105	210	153
Total Petroleum Hydrocarbons						
C7 - C9	mg/kg dry wt	< 9	-	< 8	<9	
C10 - C14	mg/kg dry wt	< 20	-	< 20	< 20	*
C15 - C36	mg/kg dry wt	< 40	+	< 40	< 40	
Total hydrocarbons (C7 - C36)	mg/kg dry wt	< 70	4	< 70	< 70	

The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked *, which sboratory are not accredited.

	ample Name:	MOA003 0.5 27-Oct-2011	MOA003 1.0 27-Oct-2011	MOA022 1.5 27-Oct-2011	MOA026 0.1 27-Oct-2011	MOA005 0.5 (duplicate)
	Lab Number:	947721.12	947721.13	947721.16	947721.17	947721.18
Individual Tests						
Dry Matter	g/100g as rcvd	-	-		89	•
Total Recoverable Antimony	mg/kg dry wt	1.1	3.1		10.1	4.5
Total Recoverable Arsenic	mg/kg dry wt	41	66	-	135	106
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	< 0.10		0.23	< 0.10
Total Recoverable Chromium	mg/kg dry wt	5	9	-	14	10
Total Recoverable Copper	mg/kg dry wt	22	53	+	137	35
Total Recoverable Lead	mg/kg dry wt	10.9	9.1		121	28
Total Recoverable Mercury	mg/kg dry wt	0.41	0.17		4.8	1.07
Total Recoverable Thallium	mg/kg dry wt				1.1	-
Total Recoverable Zinc	mg/kg dry wt	12	12	-	183	96
Metals extensive suite, screen le						
Total Recoverable Aluminium	mg/kg dry wt		1	1,480		
Total Recoverable Antimony	mg/kg dry wt			45		-
Total Recoverable Arsenic	mg/kg dry wt			920		
Total Recoverable Barium	mg/kg dry wt			210	-	
Total Recoverable Bismuth	mg/kg dry wt		-	< 0.4		
Total Recoverable Boron	mg/kg dry wt		_	< 20		- :
Total Recoverable Cadmium	mg/kg dry wt			2.8		
Total Recoverable Caesium	mg/kg dry wt		_	5.8		
Total Recoverable Calcium	mg/kg dry wt			280		
Total Recoverable Chromium	mg/kg dry wt			<2	4	_
Total Recoverable Cobalt	mg/kg dry wt			7.4		-
Total Recoverable Copper	mg/kg dry wt			360		
Total Recoverable Iron	mg/kg dry wt			28,000	-	-
Total Recoverable Lanthanum	and the second section of the second section is the second section of the section of t		-	2.3		
Total Recoverable Lanthanum	mg/kg dry wt	*	-	177	-	
Total Recoverable Lithium	mg/kg dry wt			< 0.4		
	mg/kg dry wt	2		76		100
Total Recoverable Magnesium	mg/kg dry wt			33		
Total Recoverable Manganese	mg/kg dry wt			24		
Total Recoverable Mercury	mg/kg dry wt	-			-	
Total Recoverable Molybdenum	mg/kg dry wt	-		17.0	1	-
Total Recoverable Nickel	mg/kg dry wt	-		4		-
Total Recoverable Phosphorus	mg/kg dry wt	-		56		
Total Recoverable Potassium*	mg/kg dry wt	-		790	-	
Total Recoverable Rubidium	mg/kg dry wt		-	5.7	-	
Total Recoverable Selenium	mg/kg dry wt		- I	< 20		-
Total Recoverable Sodium	mg/kg dry wt	-	-	< 40	-	-
Total Recoverable Strontium	mg/kg dry wt	-	-	4.0		
Total Recoverable Thallium	mg/kg dry wt	-	-	5.7		
otal Recoverable Tin	mg/kg dry wt			< 1.0	•	
otal Recoverable Uranium	mg/kg dry wt	-		< 0.10	-	
otal Recoverable Vanadium	mg/kg dry wt		-	< 100		
Total Recoverable Zinc	mg/kg dry wt	-	•	450	-	-
Total Petroleum Hydrocarbons in						
C7 - C9	mg/kg dry wt				<8	- I
C10 - C14	mg/kg dry wt		•		< 20	
C15 - C36	mg/kg dry wt				57	
otal hydrocarbons (C7 - C36)	mg/kg dry wt	-		*	< 70	

Analyst's Comments

Appendix No.1 - Total Petroleum Hydrocarbon Chromatograms

^{#1} It should be noted that the replicate analyses performed on this sample as part of our in-house Quality Assurance procedures showed greater variation than would normally be expected. This may reflect the heterogeneity of the sample.

SUMMARY OF METHODS

The following table(a) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Sample Type: Soil	N. H. J. B. J. J. H.	Defeult Detection 11-14	O
Test	Method Description	Default Detection Limit	Samples
Environmental Solids Sample Preparation	Air dried at 35°C and sieved, <2mm fraction. Used for sample preparation. May contain a residual moisture content of 2-5%.	*	1-5, 7, 11-13, 16-18
Environmental Solids Sample Preparation	Air dried at 35°C.	*	6, 8, 10
Metals extensive suite, screen level (33 metals)*	Dried sample, <2mm fraction. Nitric/Hydrochloric acid digestion, ICP-MS, screen level.		16
Total Petroleum Hydrocarbons in Soil	Sonication extraction in DCM, Silica cleanup, GC-FID analysis US EPA 8015B/MfE Petroleum Industry Guidelines. Tested on as received sample		1-3, 6, 8, 10, 17
Dry Matter (Env)	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. US EPA 3550.	0.10 g/100g as rcvd	1-3, 6, 8, 10, 17
Macro Total Recoverable digestion	Nitric / hydrochloric acid digestion. US EPA 200.2.		6, 8, 10
Total Recoverable digestion	Nitric / hydrochloric acid digestion. US EPA 200.2.		1-5, 7, 11-13, 16-18
Total Recoverable Antimony	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.4 mg/kg dry wt	1-5, 7, 11-13, 17-18
Total Recoverable Antimony	Dried sample, Nitric/Hydrochloric acid digestion, ICP-MS, screen level.	0.4 mg/kg dry wt	6, 8, 10
Total Recoverable Arsenic	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	2 mg/kg dry wt	1-5, 7, 11-13, 17-18
Total Recoverable Arsenic	Dried sample, Nitric/Hydrochloric acid digestion, ICP-MS, screen level.	2 mg/kg dry wt	6, 8, 10
Total Recoverable Cadmium	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.10 mg/kg dry wt	1-5, 7, 11-13, 17-18
Total Recoverable Cadmium	Dried sample, Nitric/Hydrochloric acid digestion, ICP-MS, screen level.	0.10 mg/kg dry wt	6, 8, 10
Total Recoverable Chromium	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	2 mg/kg dry wt	1-5, 7, 11-13, 17-18
Total Recoverable Chromium	Dried sample, Nitric/Hydrochloric acid digestion, ICP-MS, screen level.	2 mg/kg dry wt	6, 8, 10
Total Recoverable Copper	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	2 mg/kg dry wt	1-5, 7, 11-13, 17-18
Total Recoverable Copper	Dried sample, Nitric/Hydrochloric acid digestion, ICP-MS, screen level.	2 mg/kg dry wt	6, 8, 10
Total Recoverable Lead	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.4 mg/kg dry wt	1-5, 7, 11-13, 17-18
Total Recoverable Lead	Dried sample, Nitric/Hydrochloric acid digestion, ICP-MS, screen level.	0.4 mg/kg dry wt	6, 8, 10
Total Recoverable Mercury	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.10 mg/kg dry wt	1-5, 7, 11-13, 17-18
Total Recoverable Mercury	Dried sample, Nitric/Hydrochloric acid digestion, ICP-MS, screen level.	0.10 mg/kg dry wt	6, 8, 10
otal Recoverable Thallium	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.2 mg/kg dry wt	2, 5, 17
Total Recoverable Zinc	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	4 mg/kg dry wt	1-5, 7, 11-13, 17-18
Total Recoverable Zinc	Dried sample, Nitric/Hydrochloric acid digestion, ICP-MS, screen level.	4 mg/kg dry wt	6, 8, 10

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

This report must not be reproduced, except in full, without the written consent of the signatory.

Ara Heron BSc (Tech)

Client Services Manager - Environmental Division

Request for Analyses

NOTE: Please acknowledge receipt of these samples by signing this form and emailing to submitter.

PATTLE DELAMORE PA	RTNERS L	TD			1	form and	emailing to submitter.
From: Pattle Delam	ore Partn	ers Ltd	/		To: Mi	11s La	>
Address (Refer to base of	The state of the s		DP Auckland	PDP Christchurch	Quote No.: 4		
Submitted by: Chri	5 50	ole	Ph No.:	Marie	PDP Job No.	A0246	9100
Chain of Custody	Record					Time Received	28-0ct-2011 2 06 09 pm
Sent:	MOVED UNITARIES HAVE ON	AND RECEIVED AND TO SHEET	Received: Room temp. D	Charles and the National Association Control of the Control	C Notes:	94 ett 401.	47721
Name: Chris F	Toole		Name: Lisa Ba	viley		110 of Samples	
Signature: CFCC	e		_ Signature: <u>& Soul</u>	2ug		MIMIN	
Date and time: $\frac{78/1}{2}$	0/11	8:309	Date and time: OCT 28			03 194772	IN MARKE FRA
Results by: ZEma	ail submitte	r: Chr	ISI FORTE @pdp.co.nz	Mail (address be	elow) Pri	iority:	Normal 년 High 🏻 Urgent
The same of the same of the same of the same	all other:	The second secon	alie i Wester @pdp.co.nz	☐ Fax (number bel	ow) Re	sults required	by: / /
nvoice to: PDP		☐ Oth	er:	- Alexandre			
Sample ID	Sample type	No. bottles	Ana	llyses requested			Notes
MOA007 0:1	S	2	HOLD COLD				
MOA907015	S	2	* 11				
10 ACO7-110	S	2	, - 11				
10A02201	8	2	1)				
10 A022015	2	2	- "11				
1040221.0	5	2	1)				
MUA0050.1	5	2	11	1			
10400505	S	2	11				
104005 1.0	S	2	11				
10A005 1.5	5	_t					',
10 A003 011	S	2	11				
10A0030.5	2	2	11				10
104003110	S	2					
104003 1.5	S	2	1)				
10.4 007 1.5	5	1	11		, 1		
10A0221.5	S	1	- 1)		•		
104076011	S	2					
					Grand and	1	
mple type: S Soil SED Se	diment	GW Gro	to TW Tradewaste		LEACH Leacha P Potable		othermal
3ED 36	- Linnella	210 BIO	TW HONGWOOLG	ANN MASTEMATOL	Forania	Other: _	

Note: Samples may contain dangerous or hazardous substances

Page 1 of 1

R J Hill Laboratories Limited 1 Clyde Street Private Bag 3205 Hamilton 3240, New Zealand

+64 7 858 2000 Tel Fax +64 7 858 2001 Email mail@hill-labs.co.nz Web www.hill-labs.co.nz

NALYSIS REPORT

Page 1 of 3

SUP_{V2}

Client: Contact: Pattle Delamore Partners Ltd

Natalie Webster

C/- Pattle Delamore Partners Ltd

PO Box 9528 Newmarket **AUCKLAND 1149** Lab No: **Date Registered:**

27-Oct-2011 18-Nov-2011 **Date Reported:**

Quote No:

Order No:

Submitted By:

Client Reference: AO2469100 Chris Foote

947142

46451

Amended Report

This report replaces an earlier report issued on the 17 Nov 2011 at 10:28 am At the client's request, thallium results have been added to samples 947142.8 & 11.

S	Sample Name:	MOA 004 0.1	MOA 004 0.5	MOA 004 1.0	MOA 009 0.
		26-Oct-2011	26-Oct-2011	26-Oct-2011	26-Oct-2011
	Lab Number:	947142.1	947142.2	947142.3	947142.4
Individual Tests					
Dry Matter	g/100g as rcvd		88	86	-
Total Recoverable Antimony	mg/kg dry wt	2.69 ± 0.55	15.6 ± 2.9	20.0 ± 3.7	1.40 ± 0.36
Total Recoverable Arsenic	mg/kg dry wt	45.3 ± 4.8	16.6 ± 2.2	39.5 ± 4.2	21.1 ± 2.5
Total Recoverable Cadmium	mg/kg dry wt	0.258 ± 0.080	< 0.10 ± 0.067	0.384 ± 0.095	0.185 ± 0.073
Total Recoverable Chromium	mg/kg dry wt	21.0 ± 2.5	6.3 ± 1.5	10.6 ± 1.7	12.9 ± 1.9
Total Recoverable Copper	mg/kg dry wt	39.9 ± 5.8	8.9 ± 1.9	52.3 ± 7.5	26.0 ± 3.9
Total Recoverable Lead	mg/kg dry wt	99 ± 14	22.9 ± 3.3	64.2 ± 9.0	40.9 ± 5.8
Total Recoverable Mercury	mg/kg dry wt	1.23 ± 0.17	0.87 ± 0.13	0.494 ± 0.089	0.68 ± 0.11
Total Recoverable Zinc	mg/kg dry wt	180 ± 19	21.2 ± 3.4	185 ± 19	100 ± 11
Total Petroleum Hydrocarbons i	n Soil				
C7 - C9	mg/kg dry wt	15	< 8 ± 5.4	< 8 ± 5.4	
C10 - C14	mg/kg dry wt		< 20 ± 7.6	< 20 ± 7.6	
C15 - C36	mg/kg dry wt		< 40 ± 9.3	< 40 ± 9.3	
Total hydrocarbons (C7 - C36)	mg/kg dry wt	×	< 70 ± 14	< 70 ± 14	
S	ample Name:	MOA 009 0.5	MOA 010 0.1	MOA 010 0.5	MOA 010 1.0
	Lab Number:	26-Oct-2011 947142.5	26-Oct-2011 947142.7	26-Oct-2011 947142.8	26-Oct-2011 947142.9
Individual Tests				To be the second	
Total Recoverable Antimony	mg/kg dry wt	2.48 ± 0.52	1.71 ± 0.41	1.81 ± 0.42	2.43 ± 0.51
Total Recoverable Arsenic	mg/kg dry wt	37.3 ± 4.0	61.6 ± 6.4	41.9 ± 4.4	92.9 ± 9.4
Total Recoverable Cadmium	mg/kg dry wt	0.152 ± 0.070	0.401 ± 0.097	< 0.10 ± 0.067	< 0.10 ± 0.067
Total Recoverable Chromium	mg/kg dry wt	20.2 ± 2.5	13.6 ± 1.9	6.3 ± 1.5	14.6 ± 2.0
Total Recoverable Copper	mg/kg dry wt	25.1 ± 3.8	54.8 ± 7.8	59.4 ± 8.5	31.6 ± 4.7
Total Recoverable Lead	mg/kg dry wt	20.7 ± 3.0	65.8 ± 9.3	7.6 ± 1.2	8.8 ± 1.3
Total Recoverable Mercury	mg/kg dry wt	1.68 ± 0.22	0.70 ± 0.11	0.90 ± 0.13	0.99 ± 0.14
Total Recoverable Thallium	mg/kg dry wt	1 1 4 Can a	-	1.49 ± 0.23	
Total Recoverable Zinc	mg/kg dry wt	71.2 ± 7.6	146 ± 15	16.2 ± 3.1	18.6 ± 3.3
S	ample Name:	MOA 015 0.1 26-Oct-2011	MOA 015 0.5 26-Oct-2011	MOA 015 1.0 26-Oct-2011	MOA 015 0.1 (duplicate)
	Lab Number:	947142.11	947142.12	947142.13	947142.17
Individual Tests					
Total Recoverable Antimony	mg/kg dry wt	26.9 ± 4.9			
Total Recoverable Arsenic	mg/kg dry wt	353 ± 36	1		
Total Recoverable Cadmium	mg/kg dry wt	0.200 ± 0.074			

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised.

The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked *, which laboratory are not accredited.

S	ample Name:	MOA 015 0.1 26-Oct-2011	MOA 015 0.5 26-Oct-2011	MOA 015 1.0 26-Oct-2011	MOA 015 0.1 (duplicate)
	Lab Number:	947142.11	947142.12	947142.13	947142.17
Individual Tests		300000	344 (443.44		
Total Recoverable Chromium	mg/kg dry wt	8.4 ± 1.6			
Total Recoverable Copper	mg/kg dry wt	43.4 ± 6.3		_	-
Total Recoverable Lead	mg/kg dry wt	106 ± 15			
Total Recoverable Mercury	mg/kg dry wt	26.6 ± 3.2			3
Total Recoverable Thallium	mg/kg dry wt	2.66 ± 0.35			
Total Recoverable Zinc	mg/kg dry wt	101 ± 11			
Metals extensive suite, screen le		101 2 11			
			5 020 ± 720	2.570 + 210	5,630 ± 680
Total Recoverable Aluminium	mg/kg dry wt		5,920 ± 720 36.6 ± 6.6	2,570 ± 310 34.9 ± 6.3	29.0 ± 5.3
Total Recoverable Antimony	mg/kg dry wt		2722	and the state of the seal of t	29.0 ± 5.3
Total Recoverable Arsenic	mg/kg dry wt		683 ± 69	1,020 ± 110 183 ± 11	264 ± 16
Total Recoverable Barium	mg/kg dry wt		241 ± 15		
Total Recoverable Bismuth	mg/kg dry wt		< 0.4 ± 0.27	< 0.4 ± 0.27	< 0.4 ± 0.27
Total Recoverable Boron	mg/kg dry wt	1	< 20 ± 14	< 20 ± 14	< 20 ± 14
Total Recoverable Cadmium	mg/kg dry wt		0.250 ± 0.079	0.318 ± 0.087	0.183 ± 0.073
Total Recoverable Caesium	mg/kg dry wt	-	3.15 ± 0.35	7.23 ± 0.74	2.04 ± 0.25
Total Recoverable Calcium	mg/kg dry wt		2,220 ± 320	970 ± 160	2,830 ± 410
Total Recoverable Chromium	mg/kg dry wt		13.2 ± 1.9	5.5 ± 1.5	9.6 ± 1.7
Total Recoverable Cobalt	mg/kg dry wt		5.38 ± 0.80	5.00 ± 0.75	4.26 ± 0.66
Total Recoverable Copper	mg/kg dry wt		147 ± 21	97 ± 14	48.9 ± 7.0
Total Recoverable Iron	mg/kg dry wt		51,900 ± 5,200	59,200 ± 6,000	31,400 ± 3,200
Total Recoverable Lanthanum	mg/kg dry wt		6.93 ± 0.58	2.64 ± 0.25	4.46 ± 0.39
Total Recoverable Lead	mg/kg dry wt		156 ± 22	123 ± 18	112 ± 16
Total Recoverable Lithlum	mg/kg dry wt		3.80 ± 0.53	0.58 ± 0.28	3.53 ± 0.50
Total Recoverable Magnesium	mg/kg dry wt	A	646 ± 70	158 ± 31	1,070 ± 120
Total Recoverable Manganese	mg/kg dry wt	-	155 ± 16	44.2 ± 4.5	195 ± 20
Total Recoverable Mercury	mg/kg dry wt	•	43.2 ± 5.2	77.6 ± 9.4	25.8 ± 3.2
Total Recoverable Molybdenum	mg/kg dry wt		5.21 ± 0.98	12.6 ± 2.3	4.59 ± 0.87
Total Recoverable Nickel	mg/kg dry wt	-	5.7 ± 1.6	4.4 ± 1.5	3.4 ± 1.4
Total Recoverable Phosphorus	mg/kg dry wt	2	350 ± 44	411 ± 49	376 ± 46
Total Recoverable Potassium*	mg/kg dry wt		560 ± 110	690 ± 120	570 ± 110
Total Recoverable Rubidium	mg/kg dry wt		5.17 ± 0.59	6.49 ± 0.71	5.84 ± 0.65
Total Recoverable Selenium	mg/kg dry wt	-	< 20 ± 14	< 20 ± 14	< 20 ± 14
Total Recoverable Sodium	mg/kg dry wt	-	193 ± 41	42 ± 27	150 ± 36
Total Recoverable Strontium	mg/kg dry wt		41.4 ± 4.2	12.6 ± 1.5	23.4 ± 2.5
Total Recoverable Thallium	mg/kg dry wt	-	7.49 ± 0.91	5.35 ± 0.66	2.47 ± 0.33
Total Recoverable Tin	mg/kg dry wt	4	45.6 ± 9.2	3.36 ± 0.93	4.4 ± 1.1
Total Recoverable Uranium	mg/kg dry wt		0.237 ± 0.068	< 0.10 ± 0.067	0.148 ± 0.067
Total Recoverable Vanadium	mg/kg dry wt		< 100 ± 67	< 100 ± 67	< 100 ± 67
Total Recoverable Zinc	mg/kg dry wt		217 ± 22	132 ± 14	111 ± 12

The reported uncertainty is an expanded uncertainty with a level of confidence of approximately 95 percent (i.e. two standard deviations, calculated using a coverage factor of 2). Reported uncertainties are calculated from the performance of typical matrices, and do not include variation due to sampling.

For further information on uncertainty of measurement at Hill Laboratories, refer to the technical note on our website: www.hill-laboratories.com/files/Intro_To_UOM.pdf, or contact the laboratory.

SUMMARY OF METHODS

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Sample Type: Soil					
Test	Method Description	Default Detection Limit	Samples		
Environmental Solids Sample Preparation	Air dried at 35°C and sieved, <2mm fraction. Used for sample preparation. May contain a residual moisture content of 2-5%.		1-5, 7-9, 11-13, 17		

Test	Method Description	Default Detection Limit	Samples
Metals extensive suite, screen level (33 metals)*	Dried sample, <2mm fraction. Nitric/Hydrochloric acid digestion, ICP-MS, screen level.	7	12-13, 17
Total Petroleum Hydrocarbons in Soil	Sonication extraction in DCM, Silica cleanup, GC-FID analysis US EPA 8015B/MfE Petroleum Industry Guidelines. Tested on as received sample	7	2-3
Dry Matter (Env)	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. US EPA 3550.	0.10 g/100g as rovd	2-3
Total Recoverable digestion	Nitric / hydrochloric acid digestion. US EPA 200.2.		1-5, 7-9, 11-13, 17
Total Recoverable Antimony	Dried sample, sleved as specified (If required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.4 mg/kg dry wt	1-5, 7-9, 11
Total Recoverable Arsenic	Dried sample, sleved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	2 mg/kg dry wt	1-5, 7-9, 11
Total Recoverable Cadmium	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.10 mg/kg dry wt	1-5, 7-9, 11
Total Recoverable Chromium	Dried sample, sleved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	2 mg/kg dry wt	1-5, 7-9, 11
Total Recoverable Copper	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	2 mg/kg dry wt	1-5, 7-9, 11
Total Recoverable Lead	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.4 mg/kg dry wt	1-5, 7-9, 11
Total Recoverable Mercury	Dried sample, sleved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.10 mg/kg dry wt	1-5, 7-9, 11
Total Recoverable Thallium	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.2 mg/kg dry wt	8, 11
Total Recoverable Zinc	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	4 mg/kg dry wt	1-5, 7-9, 11

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

This report must not be reproduced, except in full, without the written consent of the signatory.

Ara Heron BSc (Tech)

Client Services Manager - Environmental Division

Lab No: 947142 v 2 Hill Laboratories Page 3 of 3

R J Hill Laboratories Limited 1 Clyde Street Private Bag 3205 Hamilton 3240, New Zealand

+64 7 858 2000 Tel Fax +64 7 858 2001 Email mail@hill-labs.co.nz Web www.hill-labs.co.nz

NALYSIS REPORT

Page 1 of 3

SPv6

Client: Contact: Pattle Delamore Partners Ltd

Natalie Webster

C/- Pattle Delamore Partners Ltd

PO Box 9528 Newmarket **AUCKLAND 1149**

Lab No: Date Registered: **Date Reported:**

27-Oct-2011 18-Nov-2011

947142

Quote No: Order No:

46451

Client Reference: Submitted By:

AO2469100 Chris Foote

Amended Report

This report replaces an earlier report issued on the 16 Nov 2011 at 2:51 pm At the client's request, thallium results have been added to samples

	Sample Name:	MOA 004 0.1 26-Oct-2011	MOA 004 0.5 26-Oct-2011	MOA 004 1.0 26-Oct-2011	MOA 009 0.1 26-Oct-2011	MOA 009 0.5 26-Oct-2011
	Lab Number:	947142.1	947142.2	947142.3	947142.4	947142.5
Individual Tests	_uo (tumber.	13811				-1117219
Dry Matter	g/100g as rovd	-	88	86	-	-
Total Recoverable Antimony	mg/kg dry wt	2.7	15.6	20	1.4	2.5
Total Recoverable Arsenic	mg/kg dry wt	45	17	40	21	37
Total Recoverable Cadmium	mg/kg dry wt	0.26	< 0.10	0.38	0.18	0.15
Total Recoverable Chromium	mg/kg dry wt	21	6	11	13	20
Total Recoverable Copper	mg/kg dry wt	40	9	52	26	25
Total Recoverable Lead	mg/kg dry wt	99	23	64	41	21
Total Recoverable Mercury	mg/kg dry wt	1.23	0.87	0.49	0.68	1.68
Total Recoverable Zinc	mg/kg dry wt	180	21	185	100	71
Total Petroleum Hydrocarbons	in Soil	AND THE	4/			
C7 - C9	mg/kg dry wt	-	<8	<8	-	
C10 - C14	mg/kg dry wt		< 20	< 20		
C15 - C36	mg/kg dry wt		< 40	< 40		
Total hydrocarbons (C7 - C36)	mg/kg dry wt		< 70	< 70	-	-
	Sample Name:	MOA 010 0.1	MOA 010 0.5	MOA 010 1.0	MOA 015 0.1	MOA 015 0.5
	Lab Number:	26-Oct-2011 947142.7	26-Oct-2011 947142.8	26-Oct-2011 947142.9	26-Oct-2011 947142.11	26-Oct-2011 947142.12
Individual Tests	Lab Number:	947 142.7	947 142.0	947 142.9	947 142.11	947 142.12
		4.7	4.0	0.4	27	
Total Recoverable Antimony Total Recoverable Arsenic	mg/kg dry wt	1.7	1.8	93	350	-
Total Recoverable Cadmium	mg/kg dry wt	62		< 0.10		
	mg/kg dry wt	0.40	< 0.10 6	< 0.10 15	0,20 8	-
Total Recoverable Chromium	mg/kg dry wt					
Total Recoverable Copper	mg/kg dry wt	55	59	32	43	
Total Recoverable Lead	mg/kg dry wt	66	7.6	8.8	106	
Total Recoverable Mercury	mg/kg dry wt	0.70	0.90	0.99	27	-
Total Recoverable Thallium	mg/kg dry wt	-	1.5	-	2.7	
Total Recoverable Zinc	mg/kg dry wt	146	16	19	101	
Metals extensive suite, screen						2577
Total Recoverable Aluminium	mg/kg dry wt	2	-	-	-	5,900
otal Recoverable Antimony	mg/kg dry wt	- 1			•	37
Total Recoverable Arsenic	mg/kg dry wt		-		· ·	680
otal Recoverable Barium	mg/kg dry wt	-	•	-		240
otal Recoverable Bismuth	mg/kg dry wt	-				< 0.4
otal Recoverable Boron	mg/kg dry wt	*				< 20
Total Recoverable Cadmium	mg/kg dry wt			-	-	0.25

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised.

The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked *, which

boratory are not accredited.

	ample Name:	MOA 010 0.1 26-Oct-2011	MOA 010 0.5 26-Oct-2011	MOA 010 1.0 26-Oct-2011	MOA 015 0.1 26-Oct-2011	MOA 015 0.5 26-Oct-2011
	Lab Number:	947142.7	947142.8	947142.9	947142.11	947142.12
Metals extensive suite, screen le	evel (33 metals)					
Total Recoverable Caesium	mg/kg dry wt	-	•	+	-	3.1
Total Recoverable Calcium	mg/kg dry wt		-			2,200
Total Recoverable Chromium	mg/kg dry wt		*	-	(+,	13
Total Recoverable Cobalt	mg/kg dry wt			-		5.4
Total Recoverable Copper	mg/kg dry wt	-		-	4	147
Total Recoverable Iron	mg/kg dry wt	-	-			52,000
Total Recoverable Lanthanum	mg/kg dry wt		-	-	-	6.9
Total Recoverable Lead	mg/kg dry wt	-	-	-	-	156
Total Recoverable Lithium	mg/kg dry wt	-	-	-	4	3.8
Total Recoverable Magnesium	mg/kg dry wt					650
Total Recoverable Manganese	mg/kg dry wt		4	2		155
Total Recoverable Mercury	mg/kg dry wt					43
Total Recoverable Molybdenum	mg/kg dry wt			1		5.2
Total Recoverable Nickel	mg/kg dry wt		-			6
Total Recoverable Phosphorus	mg/kg dry wt					350
Total Recoverable Potassium*	mg/kg dry wt			-		560
Total Recoverable Rubidium	Commence Section of the Association Commence Section 1					5.2
Total Recoverable Rubidium Total Recoverable Selenium	mg/kg dry wt			- 1		< 20
Total Recoverable Selenium Total Recoverable Sodium	mg/kg dry wt	- 1	8	- 2	-	193
	mg/kg dry wt	<u>.</u>				41
Total Recoverable Strontium	mg/kg dry wt		•	7	-	
Total Recoverable Thallium	mg/kg dry wt			•	-	7.5
Total Recoverable Tin	mg/kg dry wt			*		46
Total Recoverable Uranium	mg/kg dry wt	•				0.24
Total Recoverable Vanadium	mg/kg dry wt	1		-	•	< 100
Total Recoverable Zinc	mg/kg dry wt				-	220
	mple Name:	MOA 015 1.0 26-Oct-2011	MOA 015 0.1 (duplicate) 947142.17			
A A STATE OF THE S	_ab Number:	947142.13	947 142.17			
Metals extensive suite, screen le						
Total Recoverable Aluminium	mg/kg dry wt	2,600	5,600			- :
Total Recoverable Antimony	mg/kg dry wt	35	29	*		
Total Recoverable Arsenic	mg/kg dry wt	1,020	330	-	-	2.1
Fetal Deservable Badom	Committee and the committee of the committee of	The second secon				
	mg/kg dry wt	183	260	-		
	mg/kg dry wt mg/kg dry wt	< 0.4	< 0.4	:	2	
Total Recoverable Bismuth	and the straight probability and a fill following the fill of the straight of					
Total Recoverable Bismuth Total Recoverable Boron	mg/kg dry wt	< 0.4	< 0.4	-	•	•
Total Recoverable Barium Total Recoverable Bismuth Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Caesium	mg/kg dry wt mg/kg dry wt	< 0.4 < 20	< 0.4 < 20		-	:
Total Recoverable Bismuth Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Caesium	mg/kg dry wt mg/kg dry wt mg/kg dry wt	< 0.4 < 20 0.32	< 0.4 < 20 0.18			:
Fotal Recoverable Bismuth Fotal Recoverable Boron Fotal Recoverable Cadmium	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	< 0.4 < 20 0.32 7.2	< 0.4 < 20 0.18 2.0			:
Total Recoverable Bismuth Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Caesium Total Recoverable Calcium Total Recoverable Chromium	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	< 0.4 < 20 0.32 7.2 970	< 0.4 < 20 0.18 2.0 2,800			:
Total Recoverable Bismuth Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Caesium Total Recoverable Calcium	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	< 0.4 < 20 0.32 7.2 970 6	< 0.4 < 20 0.18 2.0 2,800			
Total Recoverable Bismuth Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Caesium Total Recoverable Calcium Total Recoverable Chromium Total Recoverable Cobalt	mg/kg dry wt	< 0.4 < 20 0.32 7.2 970 6 5.0	< 0.4 < 20 0.18 2.0 2,800 10 4.3			
Total Recoverable Bismuth Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Caesium Total Recoverable Calcium Total Recoverable Chromium Total Recoverable Cobalt Total Recoverable Copper	mg/kg dry wt	< 0.4 < 20 0.32 7.2 970 6 5.0 97	< 0.4 < 20 0.18 2.0 2,800 10 4.3			
Total Recoverable Bismuth Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Caesium Total Recoverable Calcium Total Recoverable Chromium Total Recoverable Cobalt Total Recoverable Copper Total Recoverable Iron	mg/kg dry wt	< 0.4 < 20 0.32 7.2 970 6 5.0 97 59,000	< 0.4 < 20 0.18 2.0 2,800 10 4.3 49 31,000			
Total Recoverable Bismuth Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Caesium Total Recoverable Calcium Total Recoverable Chromlum Total Recoverable Cobalt Total Recoverable Copper Total Recoverable Iron Total Recoverable Lanthanum Total Recoverable Lead	mg/kg dry wt	< 0.4 < 20 0.32 7.2 970 6 5.0 97 59,000 2.6	< 0.4 < 20 0.18 2.0 2,800 10 4.3 49 31,000 4.5			
Total Recoverable Bismuth Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Caesium Total Recoverable Calcium Total Recoverable Chromium Total Recoverable Cobalt Total Recoverable Copper Total Recoverable Iron Total Recoverable Lanthanum Total Recoverable Lead Total Recoverable Lead	mg/kg dry wt	< 0.4 < 20 0.32 7.2 970 6 5.0 97 59,000 2.6 123	< 0.4 < 20 0.18 2.0 2,800 10 4.3 49 31,000 4.5 112			
Total Recoverable Bismuth Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Caesium Total Recoverable Calcium Total Recoverable Chromium Total Recoverable Cobalt Total Recoverable Copper Total Recoverable Iron Total Recoverable Lanthanum Total Recoverable Lead Total Recoverable Lead Total Recoverable Lithium Total Recoverable Magnesium	mg/kg dry wt	< 0.4 < 20 0.32 7.2 970 6 5.0 97 59,000 2.6 123 0.6	< 0.4 < 20 0.18 2.0 2,800 10 4.3 49 31,000 4.5 112 3.5			
Total Recoverable Bismuth Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Caesium Total Recoverable Calcium Total Recoverable Chromium Total Recoverable Cobalt Total Recoverable Copper Total Recoverable Iron Total Recoverable Lanthanum Total Recoverable Lanthanum Total Recoverable Lead Total Recoverable Lithium Total Recoverable Magnesium Total Recoverable Manganese	mg/kg dry wt	< 0.4 < 20 0.32 7.2 970 6 5.0 97 59,000 2.6 123 0.6 158	< 0.4 < 20 0.18 2.0 2,800 10 4.3 49 31,000 4.5 112 3.5 1,070			
Total Recoverable Bismuth Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Caesium Total Recoverable Calcium Total Recoverable Chromium Total Recoverable Cobalt Total Recoverable Copper Total Recoverable Iron Total Recoverable Lanthanum Total Recoverable Lanthanum Total Recoverable Lead Total Recoverable Lithium Total Recoverable Magnesium Total Recoverable Manganese Total Recoverable Manganese Total Recoverable Mercury	mg/kg dry wt	< 0.4 < 20 0.32 7.2 970 6 5.0 97 59,000 2.6 123 0.6 158 44 78	< 0.4 < 20 0.18 2.0 2,800 10 4.3 49 31,000 4.5 112 3.5 1,070 195 26			
Total Recoverable Bismuth Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Caesium Total Recoverable Calcium Total Recoverable Chromium Total Recoverable Cobalt Total Recoverable Copper Total Recoverable Iron Total Recoverable Lanthanum Total Recoverable Lanthanum Total Recoverable Lead Total Recoverable Lithium Total Recoverable Magnesium Total Recoverable Magnese Total Recoverable Mercury Total Recoverable Mercury Total Recoverable Molybdenum	mg/kg dry wt	< 0.4 < 20 0.32 7.2 970 6 5.0 97 59,000 2.6 123 0.6 158 44 78 12.6	< 0.4 < 20 0.18 2.0 2,800 10 4.3 49 31,000 4.5 112 3.5 1,070 195 26 4.6			
Total Recoverable Bismuth Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Caesium Total Recoverable Calcium Total Recoverable Chromium Total Recoverable Cobalt Total Recoverable Copper Total Recoverable Iron Total Recoverable Lanthanum Total Recoverable Lanthanum Total Recoverable Lead Total Recoverable Lithium Total Recoverable Magnesium Total Recoverable Manganese Total Recoverable Mercury Total Recoverable Mercury Total Recoverable Molybdenum Total Recoverable Molybdenum Total Recoverable Nickel	mg/kg dry wt	< 0.4 < 20 0.32 7.2 970 6 5.0 97 59,000 2.6 123 0.6 158 44 78 12.6 4	< 0.4 < 20 0.18 2.0 2,800 10 4.3 49 31,000 4.5 112 3.5 1,070 195 26 4.6 3			
Total Recoverable Bismuth Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Caesium Total Recoverable Calcium Total Recoverable Chromium Total Recoverable Cobalt Total Recoverable Copper Total Recoverable Iron Total Recoverable Lanthanum Total Recoverable Lanthanum Total Recoverable Lithium Total Recoverable Magnesium Total Recoverable Manganese Total Recoverable Mercury Total Recoverable Molybdenum Total Recoverable Nickel Total Recoverable Nickel Total Recoverable Phosphorus	mg/kg dry wt	< 0.4 < 20 0.32 7.2 970 6 5.0 97 59,000 2.6 123 0.6 158 44 78 12.6 4	< 0.4 < 20 0.18 2.0 2,800 10 4.3 49 31,000 4.5 112 3.5 1,070 195 26 4.6 3 380			
Total Recoverable Bismuth Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Caesium Total Recoverable Calcium Total Recoverable Chromium Total Recoverable Cobalt Total Recoverable Copper Total Recoverable Iron Total Recoverable Lanthanum Total Recoverable Lanthanum Total Recoverable Lithium Total Recoverable Magnesium Total Recoverable Manganese Total Recoverable Mercury Total Recoverable Molybdenum Total Recoverable Nickel Total Recoverable Phosphorus Total Recoverable Phosphorus Total Recoverable Potassium*	mg/kg dry wt	< 0.4 < 20 0.32 7.2 970 6 5.0 97 59,000 2.6 123 0.6 158 44 78 12.6 4 410 690	< 0.4 < 20 0.18 2.0 2,800 10 4.3 49 31,000 4.5 112 3.5 1,070 195 26 4.6 3 380 570			
Total Recoverable Bismuth Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Caesium Total Recoverable Calcium Total Recoverable Chromium Total Recoverable Cobalt Total Recoverable Copper Total Recoverable Iron Total Recoverable Iron	mg/kg dry wt	< 0.4 < 20 0.32 7.2 970 6 5.0 97 59,000 2.6 123 0.6 158 44 78 12.6 4	< 0.4 < 20 0.18 2.0 2,800 10 4.3 49 31,000 4.5 112 3.5 1,070 195 26 4.6 3 380			

	Sample Name:	MOA 015 1.0 26-Oct-2011	MOA 015 0.1 (duplicate)		
	Lab Number:	947142.13	947142.17		
Metals extensive suite, scree	n level (33 metals)				
Total Recoverable Strontium	mg/kg dry wt	12.6	23		 -
Total Recoverable Thallium	mg/kg dry wt	5.4	2.5		-
Total Recoverable Tin	mg/kg dry wt	3.4	4.4		-
Total Recoverable Uranium	mg/kg dry wt	< 0.10	0.15	-	 -
Total Recoverable Vanadium	mg/kg dry wt	< 100	< 100		
Total Recoverable Zinc	mg/kg dry wt	132	111	-	-

SUMMARY OF METHODS

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Test	Method Description	Default Detection Limit	Samples
Environmental Solids Sample Preparation	Air dried at 35°C and sieved, <2mm fraction. Used for sample preparation. May contain a residual moisture content of 2-5%.		1-5, 7-9, 11-13, 17
Metals extensive suite, screen level (33 metals)*	Dried sample, <2mm fraction. Nitric/Hydrochloric acid digestion, ICP-MS, screen level.	15	12-13, 17
Total Petroleum Hydrocarbons in Soil	Sonication extraction in DCM, Silica cleanup, GC-FID analysis US EPA 8015B/MfE Petroleum Industry Guidelines. Tested on as received sample		2-3
Dry Matter (Env)	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. US EPA 3550.	0.10 g/100g as rovd	2-3
Total Recoverable digestion	Nitric / hydrochloric acid digestion. US EPA 200.2.	7	1-5, 7-9, 11-13, 17
Total Recoverable Antimony	Dried sample, sleved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.4 mg/kg dry wt	1-5, 7-9, 11
Total Recoverable Arsenic	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	2 mg/kg dry wt	1-5, 7-9, 11
Total Recoverable Cadmium	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.10 mg/kg dry wt	1-5, 7-9, 11
Total Recoverable Chromium	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	2 mg/kg dry wt	1-5, 7-9, 11
Total Recoverable Copper	Dried sample, sleved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	2 mg/kg dry wt	1-5, 7-9, 11
Total Recoverable Lead	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.4 mg/kg dry wt	1-5, 7-9, 11
Total Recoverable Mercury	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.10 mg/kg dry wt	1-5, 7-9, 11
Total Recoverable Thallium	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.2 mg/kg dry wt	8, 11
Total Recoverable Zinc	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	4 mg/kg dry wt	1-5, 7-9, 11

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client

This report must not be reproduced, except in full, without the written consent of the signatory.

Ara Heron BSc (Tech)

Client Services Manager - Environmental Division

Lab No: 947142 v 6 Hill Laboratories Page 3 of 3

PDP Auckland

Requi C

☐ PDP

947142

NOTE: r.. of these samp.. form and emailing t

ATTLE DELAMORE PARTNERS LTD

(ddress (Refer to base of sheet):

rom: Pattle Delamore Partners Ltd

li of Samples 16

Mond Fractions 29

	form and emailing to	-
Hil	1s Labs	
te No.:	46451	

Sent: Name: Chris Foole Signature: CF Date and time: 27/10/11			Received: Room temp. Chilled Temp.: 11-7°C Notes: Name: Enily A. Signature: COUNTY PM1:09 Date and time: DCT 27 PM1:09 MOA OIL O:1 & MOA OIL O:1	1 5
Results by: DEma	il submitte		S. Foole. @pdp.co.nz	according to
nvoice to:		☐ Other		
Sample ID	Sample type	No. bottles	Analyses requested Notes	
Magt Oil				
164				_
MOA004 0.1	2	2	HOLD COLD	
MOA 004 05	2	2	7	
M04004 10	2	2	rx -	
MOA0090.1	2	2	.0.	
MOA00965	2	2	**	_
M6A609 1.0	2	2	N .	
MOA010 0.1	2	2		
MOA010 0-5	2	2		
MU4010110	S	2	,1	
MOA 010 15	2	2	, reconstruction of the second	
MGA01501	2	2	in the second se	
MOA-01565	S	2	,,	
MOA015 110	2	2	*1	
MOA015115	5		'1	
0		1 1 1		

Note: Samples may contain dangerous or hazardous substances

Page 1 of 1

R J Hill Laboratories Limited 1 Clyde Street Private Bag 3205

+64 7 858 2000 +64 7 858 2001 Fax Email mail@hill-labs.co.nz Hamilton 3240, New Zealand | Web www.hill-labs.co.nz

NALYSIS REPORT

Page 1 of 2

SUPv1

Client: Contact: Pattle Delamore Partners Ltd

Natalie Webster

C/- Pattle Delamore Partners Ltd

PO Box 9528 Newmarket **AUCKLAND 1149**

947878 Lab No:

29-Oct-2011

Date Registered: Date Reported:

17-Nov-2011

Quote No:

46451

Order No:

AO2469100

Client Reference:

Submitted By: Chris Foote

Sample Type: Soil					
	ample Name:	MOA027 0.1 28-Oct-2011	MOA027 0.5 28-Oct-2011	MOA028 0.1 28-Oct-2011	MOA028 0.5 28-Oct-2011
	Lab Number:	947878.1	947878.2	947878.4	947878.5
Total Recoverable Antimony	mg/kg dry wt	2.52 ± 0.53	2.75 ± 0.56	1.22 ± 0.34	1.29 ± 0.35
Total Recoverable Arsenic	mg/kg dry wt	39.8 ± 4.2	88.3 ± 9.0	24.0 ± 2.8	53.1 ± 5.5
Total Recoverable Cadmium	mg/kg dry wt	0.52 ± 0.12	0.303 ± 0.085	0.240 ± 0.078	0.141 ± 0.070
Total Recoverable Chromium	mg/kg dry wt	19.1 ± 2.4	15.7 ± 2.1	15.4 ± 2.1	11.3 ± 1.8
Total Recoverable Copper	mg/kg dry wt	46.6 ± 6.7	54.7 ± 7.8	33.3 ± 4.9	40.0 ± 5.8
Total Recoverable Lead	mg/kg dry wt	113 ± 16	202 ± 29	45.9 ± 6.5	46.0 ± 6.5
Total Recoverable Mercury	mg/kg dry wt	0.434 ± 0.084	1.56 ± 0.20	0.456 ± 0.086	0.82 ± 0.12
Total Recoverable Zinc	mg/kg dry wt	606 ± 61	154 ± 16	98 ± 11	56.5 ± 6.3
s	ample Name:	MOA028 1.0 28-Oct-2011			
	Lab Number:	947878.6			
Total Recoverable Antimony	mg/kg dry wt	1.26 ± 0.35		-	-
Total Recoverable Arsenic	mg/kg dry wt	25.4 ± 2.9			-
Total Recoverable Cadmium	mg/kg dry wt	0.272 ± 0.081		+	4
Total Recoverable Chromium	mg/kg dry wt	17.1 ± 2.2		-	-
Total Recoverable Copper	mg/kg dry wt	32.5 ± 4.8			+
Total Recoverable Lead	mg/kg dry wt	45.2 ± 6.4			
Total Recoverable Mercury	mg/kg dry wt	0.460 ± 0.086			
Total Recoverable Zinc	mg/kg dry wt	108 ± 12	, A	-	-

The reported uncertainty is an expanded uncertainty with a level of confidence of approximately 95 percent (i.e. two standard deviations, calculated using a coverage factor of 2). Reported uncertainties are calculated from the performance of typical matrices, and do not include variation due to sampling.

For further information on uncertainty of measurement at Hill Laboratories, refer to the technical note on our website: www.hill-laboratories.com/files/Intro_To_UOM.pdf, or contact the laboratory.

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Sample Type: Soil					
Test	Method Description	Default Detection Limit	Samples		
Environmental Solids Sample Preparation	Air dried at 35°C and sieved, <2mm fraction. Used for sample preparation. May contain a residual moisture content of 2-5%.		1-2, 4-6		
Total Recoverable digestion	Nitric / hydrochloric acid digestion. US EPA 200.2.		1-2, 4-6		
Total Recoverable Antimony	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.4 mg/kg dry wt	1-2, 4-6		

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised.

The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked *, which laboratory are not accredited.

Test	Method Description	Default Detection Limit	Samples	
Total Recoverable Arsenic	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	2 mg/kg dry wt	1-2, 4-6	
Total Recoverable Cadmium	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.10 mg/kg dry wt	1-2, 4-6	
Total Recoverable Chromium	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	2 mg/kg dry wt	1-2, 4-6	
Total Recoverable Copper	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	2 mg/kg dry wt	1-2, 4-6	
Total Recoverable Lead	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.4 mg/kg dry wt	1-2, 4-6	
Total Recoverable Mercury	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.10 mg/kg dry wt	1-2, 4-6	
Total Recoverable Zinc	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	4 mg/kg dry wt	1-2, 4-6	

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

This report must not be reproduced, except in full, without the written consent of the signatory.

Ara Heron BSc (Tech)

Client Services Manager - Environmental Division

R J Hill Laboratories Limited 1 Clyde Street Private Bag 3205

Hamilton 3240, New Zealand Web www.hill-labs.co.nz

Tel +64 7 858 2000 Fax +64 7 858 2001 Email mail@hill-labs.co.nz Web www.hill-labs.co.nz

ANALYSIS REPORT

Page 1 of 2

SPv3

Client: Contact: Pattle Delamore Partners Ltd

Natalie Webster

C/- Pattle Delamore Partners Ltd

PO Box 9528 Newmarket AUCKLAND 1149 Lab No:

947878

Date Registered: 29-Oct-2011 Date Reported: 15-Nov-2011

Quote No: 46451

Order No:

40451

Client Reference: AO2-Submitted By: Chris

AO2469100 Chris Foote

Amended Report

This report replaces an earlier report issued on the 08 Nov 2011 at 3:55 pm. At the client's request, metal analyses have been added to sample MOA028 0.1.

Sample Type: Soil	The state of the state of		and the second second			
	Sample Name:	MOA027 0.1 28-Oct-2011	MOA027 0.5 28-Oct-2011	MOA028 0.1 28-Oct-2011	MOA028 0.5 28-Oct-2011	MOA028 1.0 28-Oct-2011
	Lab Number:	947878.1	947878.2	947878.4	947878.5	947878.6
Total Recoverable Antimony	mg/kg dry wt	2.5	2.7	1.2	1.3	1.3
Total Recoverable Arsenic	mg/kg dry wt	40	88	24	53	25
Total Recoverable Cadmium	mg/kg dry wt	0.52	0.30	0.24	0.14	0.27
Total Recoverable Chromium	mg/kg dry wt	19	16	15	11	17
Total Recoverable Copper	mg/kg dry wt	47	55	33	40	32
Total Recoverable Lead	mg/kg dry wt	113	200	46	46	45
Total Recoverable Mercury	mg/kg dry wt	0.43	1.56	0.46	0.82	0.46
Total Recoverable Zinc	mg/kg dry wt	610	154	98	56	108

SUMMARY OF METHODS

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Test	Method Description	Default Detection Limit	Samples	
Environmental Solids Sample Preparation	Air dried at 35°C and sieved, <2mm fraction. Used for sample preparation. May contain a residual moisture content of 2-5%.		1-2, 4-6	
Total Recoverable digestion	Nitric / hydrochloric acid digestion. US EPA 200.2.		1-2, 4-6	
Total Recoverable Antimony	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.4 mg/kg dry wt	1-2, 4-6	
Total Recoverable Arsenic	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	2 mg/kg dry wt	1-2, 4-6	
Total Recoverable Cadmium	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.10 mg/kg dry wt	1-2, 4-6	
Total Recoverable Chromium	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	2 mg/kg dry wt	1-2, 4-6	
Total Recoverable Copper	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	2 mg/kg dry wt	1-2, 4-6	
Total Recoverable Lead	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.4 mg/kg dry wt	1-2, 4-6	
Total Recoverable Mercury	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.10 mg/kg dry wt	1-2, 4-6	
Total Recoverable Zinc	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	4 mg/kg dry wt	1-2, 4-6	

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised.

The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked *, which practory are not accredited.

Request for A alyses

NOTE: Please acknowledge receipt of these samples by signing this form and emailing to submitter.

From: Pattle Delamore Partners Ltd			
Tom Total Dollarior Tartico Etc.	To: HIS Lab		
Address (Refer to base of sheet):			
Submitted by: Chris Fook Ph No.: 5236900	PDP Job No.: A024-69100		
	ть Кесенчец — 26-0ct-2011 8 57 50 em		
Sent: Received: Room temp. Chilled Temp. No.	947878		
Name: Chas Fock Name: 1255	Ill III WO WILL I I II		
Signature: Signature:	29 AM7:58		
Date and time: 28/10/11 3-pM Date and time:	03 1947 87 8 8 1 1 1 1 MI		
Results by: Email submitter: Chrcs. Fock @pdp.co.nz Mail (address	ss below) Priority: Normal High Urger		
□ Emall other: Valdič, NESSTV @pdp.co.nz □ Fax (numbe	r below) Results required by: / /		
nvolce to: PDP Other:			
Sample ID Sample type No. bottles Analyses requested	Notes		
MUADZZZ OILS Z HOLD COLD			
MOA0270.5 5 2 11 11			
MOACOTTIO 5 2 " "			
MOA0280.1 5 2 " "			
MOA0280.5 5 1 " "			
MOA0281.0 S 1 " "			
3,000(3)			
	Temperature On Arrival		
	— 17.3 °C ——		
	100		
	Temperature was measured on one or more arbitrarily chosen samples in this batch.		
ample type: S Soil GW Groundwater SAL Seawater/saline FW Freshwater	LEACH Leachate GEO Geothermal		
SED Sediment BIO Blota TW Tradewaste WW Wastewater	P Potable Other:		

R J Hill Laboratories Limited 1 Clyde Street Private Bag 3205 Hamilton 3240, New Zealand

Tel +64 7 858 2000 Fax +64 7 858 2001 Email mail@hill-labs.co.nz Web www.hill-labs.co.nz

ANALYSIS REPORT

Page 1 of 2

SUPv2

Client: Contact: Pattle Delamore Partners Ltd

ct: Natalie Webster

C/- Pattle Delamore Partners Ltd

PO Box 9528 Newmarket AUCKLAND 1149 Lab No:

947915

Date Registered: Date Reported: 29-Oct-2011 18-Nov-2011

46451

Quote No: Order No:

AO2469100

Client Reference: Submitted By:

AO2469100 Chris Foote

Amended Report

This report replaces an earlier report issued on the 17 Nov 2011 at 10:31 am At the client's request, thallium results have been added to samples 947915.3, 6, 9 & 14.

Sample Type: Soil	Sample Name:	MOA 013 0.1	MOA 013 0.5	MOA 013 1.0	MOA 023 0.1
	cample Hame.	27-Oct-2011	27-Oct-2011	27-Oct-2011	27-Oct-2011
	Lab Number:	947915.1	947915.2	947915.3	947915.5
Total Recoverable Antimony	mg/kg dry wt	5.21 ± 0.98	4.44 ± 0.84	9.0 ± 1.7	9.7 ± 1.8
Total Recoverable Arsenic	mg/kg dry wt	57.5 ± 5.9	118 ± 12	230 ± 23	119 ± 12
Total Recoverable Cadmium	mg/kg dry wt	< 0.10 ± 0.067	0.129 ± 0.069	0.255 ± 0.079	0.400 ± 0.097
Total Recoverable Chromium	mg/kg dry wt	10.4 ± 1.7	9.9 ± 1.7	14.4 ± 2.0	11.7 ± 1.8
Total Recoverable Copper	mg/kg dry wt	25.9 ± 3.9	39.8 ± 5.8	202 ± 29	46.9 ± 6.7
Total Recoverable Lead	mg/kg dry wt	36.7 ± 5.2	40.5 ± 5.7	182 ± 26	166 ± 24
Total Recoverable Mercury	mg/kg dry wt	1.11 ± 0.15	2.33 ± 0.29	4.98 ± 0.61	1.31 ± 0.18
Total Recoverable Thallium	mg/kg dry wt	•		1.07 ± 0.19	•
Total Recoverable Zinc	mg/kg dry wt	63.7 ± 6.9	68.3 ± 7.4	130 ± 14	241 ± 25
	Sample Name:	MOA 023 0.5 27-Oct-2011	MOA 025 0.1 27-Oct-2011	MOA 025 0.5 27-Oct-2011	MOA 008 0.1 28-Oct-2011
	Lab Number:	947915.6	947915.9	947915.10	947915.13
Total Recoverable Antimony	mg/kg dry wt	10.3 ± 1.9	10.7 ± 2.0	2.62 ± 0.54	5.24 ± 0.98
Total Recoverable Arsenic	mg/kg dry wt	414 ± 42	132 ± 14	114 ± 12	51.5 ± 5.4
Total Recoverable Cadmium	mg/kg dry wt	0.238 ± 0.078	< 0.10 ± 0.067	< 0.10 ± 0.067	0.138 ± 0.069
Total Recoverable Chromium	mg/kg dry wt	10.3 ± 1.7	8.9 ± 1.6	7.7 ± 1.6	11.0 ± 1.8
Total Recoverable Copper	mg/kg dry wt	56.4 ± 8.0	36.4 ± 5.3	34.0 ± 5.0	21.0 ± 3.3
Total Recoverable Lead	mg/kg dry wt	113 ± 16	103 ± 15	40.1 ± 5.7	32.3 ± 4.6
Total Recoverable Mercury	mg/kg dry wt	13.9 ± 1.7	3.05 ± 0.38	1.92 ± 0.24	0.481 ± 0.088
Total Recoverable Thallium	mg/kg dry wt	2.24 ± 0.30	1.17 ± 0.20		
Total Recoverable Zinc	mg/kg dry wt	160 ± 17	60.9 ± 6.7	25.1 ± 3.7	79.5 ± 8.4
Ye menter of	Sample Name:	MOA 008 0.5 28-Oct-2011	111111		
	Lab Number:	947915.14			
Total Recoverable Antimony	mg/kg dry wt	8.5 ± 1.6		•	•
Total Recoverable Arsenic	mg/kg dry wt	156 ± 16		•	
Total Recoverable Cadmium	mg/kg dry wt	< 0.10 ± 0.067		•	
Total Recoverable Chromium	mg/kg dry wt	6.8 ± 1.5		•	
Total Recoverable Copper	mg/kg dry wt	33.9 ± 5.0		-	
Total Recoverable Lead	mg/kg dry wt	23.8 ± 3.4	Ġ.	à l	
Total Recoverable Mercury	mg/kg dry wt	1.37 ± 0.18		-	
Total Recoverable Thallium	mg/kg dry wt	1.12 ± 0.19	2	4	•
Total Recoverable Zinc	mg/kg dry wt	84.7 ± 8.9			

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised.

The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked *, which oratory are not accredited.

The reported uncertainty is an expanded uncertainty with a level of confidence of approximately 95 percent (i.e. two standard deviations, calculated using a coverage factor of 2). Reported uncertainties are calculated from the performance of typical matrices, and do not include variation due to sampling.

For further information on uncertainty of measurement at Hill Laboratories, refer to the technical note on our website: www.hill-laboratories.com/files/Intro_To_UOM.pdf, or contact the laboratory.

SUMMARY OF METHODS

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Test	Method Description	Default Detection Limit	Samples
Environmental Solids Sample Preparation	Air dried at 35°C and sieved, <2mm fraction. Used for sample preparation. May contain a residual moisture content of 2-5%.	1	1-3, 5-6, 9-10, 13-14
Total Recoverable digestion	Nitric / hydrochloric acid digestion. US EPA 200.2.		1-3, 5-6, 9-10, 13-14
Total Recoverable Antimony	Dried sample, sleved as specified (If required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.4 mg/kg dry wt	1-3, 5-6, 9-10, 13-14
Total Recoverable Arsenic	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	2 mg/kg dry wt	1-3, 5-6, 9-10, 13-14
Total Recoverable Cadmium	Dried sample, sleved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.10 mg/kg dry wt	1-3, 5-6, 9-10, 13-14
Total Recoverable Chromium	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	2 mg/kg dry wt	1-3, 5-6, 9-10, 13-14
Total Recoverable Copper	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	2 mg/kg dry wt	1-3, 5-6, 9-10, 13-14
Total Recoverable Lead	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.4 mg/kg dry wt	1-3, 5-6, 9-10, 13-14
Total Recoverable Mercury	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.10 mg/kg dry wt	1-3, 5-6, 9-10, 13-14
Total Recoverable Thallium	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.2 mg/kg dry wt	3, 6, 9, 14
Total Recoverable Zinc	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	4 mg/kg dry wt	1-3, 5-6, 9-10, 13-14

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

This report must not be reproduced, except in full, without the written consent of the signatory.

Ara Heron BSc (Tech)

Client Services Manager - Environmental Division

R J Hill Laboratories Limited 1 Clyde Street Private Bag 3205

Private Bag 3205 Hamilton 3240, New Zealand

Tel +64 7 858 2000 Fax +64 7 858 2001 Email mail@hill-labs.co.nz Web www.hill-labs.co.nz

ANALYSIS REPORT

Page 1 of 2

SPv3

Client: Contact: Pattle Delamore Partners Ltd

Natalie Webster

C/- Pattle Delamore Partners Ltd

PO Box 9528 Newmarket AUCKLAND 1149 Lab No: 947915

Date Registered: 29-Oct-2011 Date Reported: 18-Nov-2011

Quote No:

Order No:

Client Reference: A Submitted By: C

: AO2469100 Chris Foote

46451

Amended Report

This report replaces an earlier report issued on the 08 Nov 2011 at 11:39 am At the client's request, thallium results have been added to samples 947915.3, 6, 9 & 14.

	Sample Name:	MOA 013 0.1 27-Oct-2011	MOA 013 0.5 27-Oct-2011	MOA 013 1.0 27-Oct-2011	MOA 023 0.1 27-Oct-2011	MOA 023 0.5 27-Oct-2011
	Lab Number:	947915.1	947915.2	947915.3	947915.5	947915.6
Total Recoverable Antimony	mg/kg dry wt	5.2	4.4	9.0	9.7	10.3
Total Recoverable Arsenic	mg/kg dry wt	57	118	230	119	410
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	0.13	0.25	0.40	0.24
Total Recoverable Chromium	mg/kg dry wt	10	10	14	12	10
Total Recoverable Copper	mg/kg dry wt	26	40	200	47	56
Total Recoverable Lead	mg/kg dry wt	37	40	182	166	113
Total Recoverable Mercury	mg/kg dry wt	1.11	2.3	5.0	1.31	13.9
Total Recoverable Thallium	mg/kg dry wt	*		1.1	-	2.2
Total Recoverable Zinc	mg/kg dry wt	64	68	130	240	160

	Sample Name:	MOA 025 0.1 27-Oct-2011	MOA 025 0.5 27-Oct-2011	MOA 008 0.1 28-Oct-2011	MOA 008 0.5 28-Oct-2011	
	Lab Number:	947915.9	947915.10	947915.13	947915.14	
Total Recoverable Antimony	mg/kg dry wt	10.7	2.6	5.2	8.5	
Total Recoverable Arsenic	mg/kg dry wt	132	114	51	156	
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	< 0.10	0.14	< 0.10	-
Total Recoverable Chromium	mg/kg dry wt	9	8	11	7	-
Total Recoverable Copper	mg/kg dry wt	36	34	21	34	-
Total Recoverable Lead	mg/kg dry wt	103	40	32	24	-
Total Recoverable Mercury	mg/kg dry wt	3.1	1.92	0.48	1.37	-
Total Recoverable Thallium	mg/kg dry wt	1.2	1		1.1	
Total Recoverable Zinc	mg/kg dry wt	61	25	79	85	-

SUMMARY OF METHODS

The following table(a) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Samples
Environmental Solids Sample Preparation	Air dried at 35°C and sieved, <2mm fraction. Used for sample preparation. May contain a residual moisture content of 2-5%.		1-3, 5-6, 9-10, 13-14
Total Recoverable digestion	Nitric / hydrochloric acid digestion. US EPA 200.2.	1	1-3, 5-6, 9-10, 13-14
Total Recoverable Antimony	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.4 mg/kg dry wt	1-3, 5-6, 9-10, 13-14
Total Recoverable Arsenic	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	2 mg/kg dry wt	1-3, 5-6, 9-10, 13-14

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised.

The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked *, which aboratory are not accredited.

Test	Method Description	Default Detection Limit	Samples
Total Recoverable Cadmium	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.10 mg/kg dry wt	1-3, 5-6, 9-10, 13-14
Total Recoverable Chromium	Dried sample, sleved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	2 mg/kg dry wt	1-3, 5-6, 9-10, 13-14
Total Recoverable Copper	Dried sample, sleved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	2 mg/kg dry wt	1-3, 5-6, 9-10, 13-14
Total Recoverable Lead	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.4 mg/kg dry wt	1-3, 5-6, 9-10, 13-14
Total Recoverable Mercury	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.10 mg/kg dry wt	1-3, 5-6, 9-10, 13-14
Total Recoverable Thallium	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.2 mg/kg dry wt	3, 6, 9, 14
Total Recoverable Zinc	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	4 mg/kg dry wt	1-3, 5-6, 9-10, 13-14

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

This report must not be reproduced, except in full, without the written consent of the signatory.

Ara Heron BSc (Tech)

Client Services Manager - Environmental Division

Request for Analyses

NOTE: Please acknowledge receipt

PATTLE DELAMORE PA			a la value de la companya de la comp		form and emailing to submitter.
From: Pattle Delamo		ers Ltd		-	Is Las
Address (Refer to base of Submitted by:			PDP Auckland PDP Wellington PDP Christchurch		46451
METAMENCA PROTOCULAR META DE	O CIND PRODU	2 K	Ph No.:	PDP Job No.:	1402469100
Chain of Custody I	Record				Time Received 29-0ct-2011 9 26 14 am Job No.
Sent:	- 1-		Received: ☐ Room temp. ☐ Chilled Temp.:13-(10.00	94/975
Name: Chris			Name: Rose Rose		No of Samples 16 the of Fractions 0
Signature: Color	111	700	Signature: 3CT 29 AM8: Q2	0	
Date and time: 28/10		- minimize	print and annual programs of the contract of t	NAME OF TAXABLE PARTY.	83 (9479 (61
			5, Focke @pdp.co.nz EMail (address be	elow) Pric	prity: □ Normal □ 村頃 □ Urgeni
□ Emai		Nata	しき、してららを @pdp.co.nz ロ Fax (number belo	low) Res	sults required by: / /
Invoice to: PDP	-14	☐ Othe	er:		
Sample ID	Sample type	No. bottles	Analyses requested	William All	Notes
MUAUIS 0.1	5	7	HOLD COLD		
MUA01305	5/	2	LI		
MOA0131.0	3/	2	()		
MO 4013 15	5	2	44		
MUA0230-1	5	2	Ч		
Ma A0230.5	2	2	ll l		
MOAU231.0	5	2	11		
MUA0231-5	2	2			
MOAORS C.1	5	1	. 1		
MOA025015	5	1	. The second second		
MOA0251.0	2	1			
MOAO251.0 NOAO251.5 MOAO08 GIJ	5		\frac{1}{20}		
MOA008 011	5	2	". "		
MU4008 015		2			
01800AOM		2	17		
MOA681.5	S	1	(n		
		_			
	-	-			
ample type: S Soil		GW Grou	undwater SAL Seawater/saline FW Freshwater U	EACH Leachate	GEO Geothermal

Note: Samples may contain dangerous or hazardous substances

Page __ of _

R J Hill Laboratories Limited 1 Clyde Street Private Bag 3205 Hamilton 3240, New Zealand

+64 7 858 2000 Tel +64 7 858 2001 Fax Email mail@hill-labs.co.nz Web www.hill-labs.co.nz

NALYSIS REPORT

Page 1 of 5

SUPv2

Client: Contact: Pattle Delamore Partners Ltd

Natalie Webster

C/- Pattle Delamore Partners Ltd

PO Box 9528 Newmarket **AUCKLAND 1149** Lab No: **Date Registered: Date Reported:**

28-Oct-2011 18-Nov-2011

46451

947769

Quote No: Order No:

Client Reference: Submitted By:

AO2469100 Chris Foote

Amended Repoi

This report replaces an earlier report issued on the 17 Nov 2011 at 10:30 am At the client's request, thallium results have been added to samples 947769.5, 11, 12, 13, 14, 15, 18, 20 & 23.

S	ample Name:	MOA014 0.1	MOA014 0.5	MOA014 1.0	MOA016 0.1
	Lab Number:	947769.1	947769.2	947769.3	947769.5
Individual Tests					
Dry Matter	g/100g as rcvd	71	79	74	76
Total Recoverable Antimony	mg/kg dry wt	3.99 ± 0.77	2.57 ± 0.53	2.30 ± 0.49	4.59 ± 0.87
Total Recoverable Arsenic	mg/kg dry wt	88.2 ± 9.0	101 ± 11	111 ± 12	187 ± 19
Total Recoverable Cadmium	mg/kg dry wt	$< 0.10 \pm 0.067$	0.146 ± 0.070	< 0.10 ± 0.067	0.224 ± 0.076
Total Recoverable Chromium	mg/kg dry wt	8.5 ± 1.6	10.2 ± 1.7	8.5 ± 1.6	13.2 ± 1.9
Total Recoverable Copper	mg/kg dry wt	27.7 ± 4.1	41.7 ± 6.0	38.9 ± 5.7	48.9 ± 7.0
Total Recoverable Lead	mg/kg dry wt	34.6 ± 4.9	51.6 ± 7.3	18.9 ± 2.7	82 ± 12
Total Recoverable Mercury	mg/kg dry wt	1.28 ± 0.17	2.93 ± 0.36	1.98 ± 0.25	3.89 ± 0.48
Total Recoverable Thallium	mg/kg dry wt		•		1.16 ± 0.20
Total Recoverable Zinc	mg/kg dry wt	67.7 ± 7.3	74.0 ± 7.9	28.2 ± 3.9	148 ± 16
Total Petroleum Hydrocarbons i	n Soil				
C7 - C9	mg/kg dry wt	< 11 ± 5.6	< 10 ± 5.5	< 10 ± 5.5	< 9 ± 5.4
C10 - C14	mg/kg dry wt	< 30 ± 7.9	< 20 ± 7.7	< 20 ± 7.7	< 20 ± 7.7
C15 - C36	mg/kg dry wt	$< 50 \pm 9.7$	< 40 ± 9.5	43.8 ± 9.8	< 40 ± 9.4
Total hydrocarbons (C7 - C36)	mg/kg dry wt	< 80 ± 14	< 70 ± 14	< 70 ± 14	< 70 ± 14
s	ample Name:	MOA016 0.5	MOA017 0.1	MOA017 0.5	MOA018 0.1
	Lab Number:	947769.6	947769.7	947769.8	947769.11
Individual Tests	F-12-17-04-12				
Dry Matter	g/100g as rcvd	83	The state of the s	and the	+
Total Recoverable Antimony	mg/kg dry wt	0.68 ± 0.29	2.06 ± 0.46	0.90 ± 0.31	12.8 ± 2.4
Total Recoverable Arsenic	mg/kg dry wt	549 ± 55	49.7 ± 5.2	54.7 ± 5.7	248 ± 25
Total Recoverable Cadmium	mg/kg dry wt	< 0.10 ± 0.067	0.302 ± 0.085	0.103 ± 0.067	0.54 ± 0.12
Total Recoverable Chromium	mg/kg dry wt	20.6 ± 2.5	11.7 ± 1.8	12.5 ± 1.9	15.1 ± 2.1
Total Recoverable Copper	mg/kg dry wt	36.1 ± 5.3	31.2 ± 4.6	29.0 ± 4.3	73 ± 11
Total Recoverable Lead	mg/kg dry wt	8.8 ± 1.3	58.2 ± 8.2	71 ± 10	140 ± 20
Total Recoverable Mercury	mg/kg dry wt	1.18 ± 0.16	1.10 ± 0.15	0.600 ± 0.098	10.4 ± 1.3
Total Recoverable Thallium	mg/kg dry wt	2			1.88 ± 0.27
Total Recoverable Zinc	mg/kg dry wt	44.1 ± 5.2	124 ± 13	189 ± 20	162 ± 17
Total Petroleum Hydrocarbons i	n Soil				
C7 - C9	mg/kg dry wt	< 8 ± 5.4		•	-
C10 - C14	mg/kg dry wt	< 20 ± 7.6	-	*	-
C15 - C36	mg/kg dry wt	$< 40 \pm 9.3$	-		-
Total hydrocarbons (C7 - C36)	mg/kg dry wt	< 70 ± 14			

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is Internationally recognised.

The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked *, which laboratory are not accredited.

	Sample Name:	MOA018 0.5	MOA018 1.0	MOA019 0.1	MOA019 0.5
	Lab Number:	947769.12	947769.13	947769.14	947769.15
Individual Tests					
Total Recoverable Antimony	mg/kg dry wt	14.1 ± 2.6	19.0 ± 3.5	7.3 ± 1.4	19.5 ± 3.6
Total Recoverable Arsenic	mg/kg dry wt	562 ± 57	598 ± 60	151 ± 16	464 ± 47
Total Recoverable Cadmium	mg/kg dry wt	0.388 ± 0.095	< 0.10 ± 0.067	0.74 ± 0.15	0.72 ± 0.15
Total Recoverable Chromium	mg/kg dry wt	8.2 ± 1.6	6.9 ± 1.5	15.2 ± 2.1	10.4 ± 1.7
Total Recoverable Copper	mg/kg dry wt	55.7 ± 8.0	33.2 ± 4.9	53.6 ± 7.7	130 ± 19
Total Recoverable Lead	mg/kg dry wt	139 ± 20	123 ± 18	215 ± 31	850 ± 120
Total Recoverable Mercury	mg/kg dry wt	16.7 ± 2.1	28.8 ± 3.5	11.5 ± 1.4	24.1 ± 2.9
Total Recoverable Thallium	mg/kg dry wt	3.24 ± 0.42	6.18 ± 0.76	1.29 ± 0.21	3.89 ± 0.49
Total Recoverable Zinc	mg/kg dry wt	134 ± 14	58.1 ± 6.4	253 ± 26	258 ± 26
	Sample Name:	MOA019 1.0	MOA020 0.1	MOA020 0.5	MOA020 1.0
	Lab Number:	947769.16	947769.18	947769.19	947769.20
Individual Tests	Lab Number.	047700.10	011100.10	011100110	0.11.00.00
Total Recoverable Antimony	malka dayya		18.1 ± 3.3		7.0 ± 1.3
Total Recoverable Antimony Total Recoverable Arsenic	mg/kg dry wt	•	315 ± 32		7.0 ± 1.3 549 ± 55
Total Recoverable Arsenic Total Recoverable Cadmium	mg/kg dry wt		0.162 ± 0.071		0.164 ± 0.071
Total Recoverable Cadmium Total Recoverable Chromium	mg/kg dry wt		8.3 ± 1.6		11.7 ± 1.8
Total Recoverable Copper	mg/kg dry wt		27.5 ± 4.1		51.1 ± 7.3
Total Recoverable Copper	mg/kg dry wt		27.5 ± 4.1		42.1 ± 6.0
Total Recoverable Lead Total Recoverable Mercury	mg/kg dry wt		117 ± 17 13.2 ± 1.6		42.1 ± 6.0 8.4 ± 1.1
Total Recoverable Mercury Total Recoverable Thallium	mg/kg dry wt	- I	13.2 ± 1.6 2.00 ± 0.28		8.4 ± 1.1 1.95 ± 0.27
Total Recoverable Thallium	mg/kg dry wt		76.4 ± 8.1	-	1.95 ± 0.27 155 ± 16
The same of the sa	mg/kg dry wt	-	70.4 ± 0.1	•	100 1 10
Metals extensive suite, screen l		4 000 + 000		9 990 : 400	
Total Recoverable Aluminium	mg/kg dry wt	1,800 ± 220		3,290 ± 400	
Total Recoverable Antimony	mg/kg dry wt	16.6 ± 3.1		26.6 ± 4.8	
Total Recoverable Arsenic	mg/kg dry wt	4,740 ± 480		1,450 ± 150	-
Total Recoverable Barium	mg/kg dry wt	157.8 ± 9.5	*	256 ± 16	
Total Recoverable Bismuth	mg/kg dry wt	< 0.4 ± 0.27	*	3.20 ± 0.52	
Total Recoverable Boron	mg/kg dry wt	< 20 ± 14		< 20 ± 14	
Total Recoverable Cadmium	mg/kg dry wt	0.306 ± 0.085		< 0.10 ± 0.067	
Total Recoverable Caesium	mg/kg dry wt	3.83 ± 0.41		4.42 ± 0.47	
Total Recoverable Calcium	mg/kg dry wt	1,240 ± 190		2,140 ± 310	
Total Recoverable Chromium	mg/kg dry wt	6.9 ± 1.5		6.9 ± 1.5	
Fotal Recoverable Cobalt	mg/kg dry wt	0.48 ± 0.27 #1		3.34 ± 0.54	-
Total Recoverable Copper	mg/kg dry wt	42.1 ± 6.1	*	30.9 ± 4.6	
Total Recoverable Iron	mg/kg dry wt	34,600 ± 3,500	T.	46,900 ± 4,700	Ĭ.
Total Recoverable Lanthanum	mg/kg dry wt	6.50 ± 0.54		3.34 ± 0.30	
Total Recoverable Lead	mg/kg dry wt	67.9 ± 9.6	-	250 ± 36	-
Total Recoverable Lithium	mg/kg dry wt	0.41 ± 0.27		1.79 ± 0.34	•
Total Recoverable Magnesium	mg/kg dry wt	128 ± 30	1	571 ± 63	•
Total Recoverable Manganese	mg/kg dry wt	22.5 ± 2.4	-	104 ± 11	
Total Recoverable Mercury	mg/kg dry wt	43.3 ± 5.3	*	28.9 ± 3.5	-
Total Recoverable Molybdenum	mg/kg dry wt	4.91 ± 0.93	*	9.4 ± 1.8	-
Total Recoverable Nickel	mg/kg dry wt	< 2 ± 1.4		3.1 ± 1.4	- 2
otal Recoverable Phosphorus	mg/kg dry wt	153 ± 31		412 ± 49	-
otal Recoverable Potassium*	mg/kg dry wt	1,190 ± 180		870 ± 140	-
otal Recoverable Rubidium	mg/kg dry wt	5.48 ± 0.61		5.86 ± 0.65	~
otal Recoverable Selenium	mg/kg dry wt	< 20 ± 14	-	< 20 ± 14	
otal Recoverable Sodium	mg/kg dry wt	199 ± 42 #1	2	212 ± 43	7
otal Recoverable Strontium	mg/kg dry wt	13.2 ± 1.5	Į.	31.3 ± 3.3	-
otal Recoverable Thallium	mg/kg dry wt	4.97 ± 0.62		5.00 ± 0.62	-
otal Recoverable Tin	mg/kg dry wt	1.46 ± 0.70		9.1 ± 2.0	
otal Recoverable Uranium	mg/kg dry wt	< 0.10 ± 0.067	•	< 0.10 ± 0.067	9
otal Recoverable Vanadium	mg/kg dry wt	< 100 ± 67	*	< 100 ± 67	-
otal Recoverable Zinc	mg/kg dry wt	83.5 ± 8.8		62.4 ± 6.8	-

S	ample Name:	MOA024 0.1	MOA024 0.5	MOA024 1.0	MOA016 0.1 (duplicate)
	Lab Number:	947769.21	947769.22	947769.23	947769.25
Individual Tests			V270,7-47		
Total Recoverable Antimony	mg/kg dry wt	4.83 ± 0.91	0.51 ± 0.28	22.6 ± 4.1	
Total Recoverable Arsenic	mg/kg dry wt	45.5 ± 4.8	17.6 ± 2.3	505 ± 51	
Total Recoverable Cadmium	mg/kg dry wt	0.176 ± 0.072	< 0.10 ± 0.067	0.160 ± 0.071	
Total Recoverable Chromium	mg/kg dry wt	12.2 ± 1.8	10.1 ± 1.7	6.6 ± 1.5	
Total Recoverable Copper	mg/kg dry wt	37.4 ± 5.4	43.1 ± 6.2	41.0 ± 5.9	
Total Recoverable Lead	mg/kg dry wt	129 ± 19	11.6 ± 1.7	157 ± 22	-
Total Recoverable Mercury	mg/kg dry wt	1.98 ± 0.25	0.112 ± 0.067	132 ± 16	
Total Recoverable Thallium	mg/kg dry wt	-	0.712 2 0.007	2.85 ± 0.37	
Total Recoverable Zinc	mg/kg dry wt	102 ± 11	27.4 ± 3.9	57.0 ± 6.3	
Metals extensive suite, screen le		102 2 11	27.77 2 0.0	0110 2 010	
Total Recoverable Aluminium	mg/kg dry wt				12,300 ± 1,500
(4 (4) () 4 (4 () 4 (The second section is a second section of the second section in the second section is a second section of the second section in the second section is a second section of the second section in the second section is a second section of the second section in the second section is a second section of the second section in the second section is a second section of the second section of the second section is a second section of the section of th				5.20 ± 0.98
Total Recoverable Antimony Total Recoverable Arsenic	mg/kg dry wt		-	-	191 ± 20
	mg/kg dry wt				82.4 ± 5.0
Total Recoverable Barium	mg/kg dry wt				
Total Recoverable Bismuth	mg/kg dry wt		·		< 0.4 ± 0.27
Total Recoverable Boron	mg/kg dry wt				< 20 ± 14
Total Recoverable Cadmium	mg/kg dry wt				0.305 ± 0.085
Total Recoverable Caesium	mg/kg dry wt	-			2.27 ± 0.27
Total Recoverable Calcium	mg/kg dry wt			*	5,700 ± 810
Total Recoverable Chromium	mg/kg dry wt				14.0 ± 2.0
Total Recoverable Cobalt	mg/kg dry wt		•	*	9.6 ± 1.4
Total Recoverable Copper	mg/kg dry wt		*		51.7 ± 7.4
Total Recoverable Iron	mg/kg dry wt	*	*		41,500 ± 4,200
Total Recoverable Lanthanum	mg/kg dry wt	+	•		9.09 ± 0.74
Total Recoverable Lead	mg/kg dry wt				78 ± 11
Total Recoverable Lithium	mg/kg dry wt	*	•		7.27 ± 0.92
Total Recoverable Magnesium	mg/kg dry wt				1,800 ± 190
Total Recoverable Manganese	mg/kg dry wt	*			543 ± 55
Total Recoverable Mercury	mg/kg dry wt			+	3.85 ± 0.47
Total Recoverable Molybdenum	mg/kg dry wt		-		1.13 ± 0.33
Total Recoverable Nickel	mg/kg dry wt	÷	4	•	7.2 ± 1.7
Total Recoverable Phosphorus	mg/kg dry wt			H	438 ± 52
Total Recoverable Potassium*	mg/kg dry wt	-	•		1,140 ± 180
Total Recoverable Rubidium	mg/kg dry wt	+		4	8.92 ± 0.93
Total Recoverable Selenium	mg/kg dry wt				< 20 ± 14
otal Recoverable Sodium	mg/kg dry wt	-			472 ± 80
otal Recoverable Strontium	mg/kg dry wt				37.9 ± 3.9
otal Recoverable Thallium	mg/kg dry wt				1.11 ± 0.19
otal Recoverable Tin	mg/kg dry wt	V 0 20 - 1			1.18 ± 0.68
otal Recoverable Uranium	mg/kg dry wt	-			0.292 ± 0.069
otal Recoverable Vanadium	mg/kg dry wt				< 100 ± 67
otal Recoverable Zinc	mg/kg dry wt				168 ± 18
C ₀	mple Name:	MOA018 0.1	MOA020 0.1	MOA019 0.1	
	ab Number:	(duplicate) 947769.26	(duplicate) 947769.27	(duplicate) 947769.28	
Metals extensive suite, screen lev	vel (33 metals)				
otal Recoverable Aluminium	mg/kg dry wt	16,300 ± 2,000	6,710 ± 810	13,600 ± 1,700	
otal Recoverable Antimony	mg/kg dry wt	14.4 ± 2.7	23.1 ± 4.2	10.9 ± 2.0	
otal Recoverable Arsenic	mg/kg dry wt	222 ± 23	375 ± 38	226 ± 23	
otal Recoverable Barium	mg/kg dry wt	222 ± 14	149.2 ± 9.0	191 ± 12	
otal Recoverable Bismuth	mg/kg dry wt	< 0.4 ± 0.27	0.99 ± 0.30	< 0.4 ± 0.27	2
otal Recoverable Boron	mg/kg dry wt	< 20 ± 14	< 20 ± 14	< 20 ± 14	-
otal Recoverable Cadmium	mg/kg dry wt	0.49 ± 0.11	0.204 ± 0.074	0.64 ± 0.14	
otal Recoverable Caesium	mg/kg dry wt	1.87 ± 0.23	3.03 ± 0.34	1.61 ± 0.21	

Sa	ample Name:	MOA018 0.1	MOA020 0.1	MOA019 0.1	
	ala Niverba	(duplicate) 947769.26	(duplicate) 947769.27	(duplicate) 947769.28	
	Lab Number:	947709.20	94//09.2/	947709.20	
Metals extensive suite, screen le		100000			
Total Recoverable Calcium	mg/kg dry wt	4,340 ± 620	2,660 ± 380	6,000 ± 850	•
Total Recoverable Chromium	mg/kg dry wt	14.3 ± 2.0	11.6 ± 1.8	12.5 ± 1.9	*
Total Recoverable Cobalt	mg/kg dry wt	10.0 ± 1.5	5.86 ± 0.87	9.8 ± 1.5	-
Total Recoverable Copper	mg/kg dry wt	78 ± 12	32.0 ± 4.7	73 ± 11	-
Total Recoverable Iron	mg/kg dry wt	35,100 ± 3,600	31,400 ± 3,200	31,600 ± 3,200	-
Total Recoverable Lanthanum	mg/kg dry wt	16.3 ± 1.4	5.07 ± 0.43	7.43 ± 0.61	
Total Recoverable Lead	mg/kg dry wt	156 ± 22	131 ± 19	237 ± 34	+
Total Recoverable Lithium	mg/kg dry wt	6.75 ± 0.86	3.14 ± 0.46	4.96 ± 0.66	
Total Recoverable Magnesium	mg/kg dry wt	1,550 ± 160	1,230 ± 130	2,280 ± 240	
Total Recoverable Manganese	mg/kg dry wt	1,160 ± 120	308 ± 31	623 ± 63	
Total Recoverable Mercury	mg/kg dry wt	10.6 ± 1.3	15.0 ± 1.8	12.3 ± 1.5	
Total Recoverable Molybdenum	mg/kg dry wt	2.63 ± 0.54	6.2 ± 1.2	2.33 ± 0.50	
Total Recoverable Nickel	mg/kg dry wt	6.6 ± 1.6	5.3 ± 1.6	5.8 ± 1.6	+
Total Recoverable Phosphorus	mg/kg dry wt	1,000 ± 110	488 ± 56	529 ± 60	-
Total Recoverable Potassium*	mg/kg dry wt	850 ± 140	1,080 ± 170	820 ± 140	
Total Recoverable Rubidium	mg/kg dry wt	7.18 ± 0.77	6.59 ± 0.71	7.62 ± 0.81	
Total Recoverable Selenium	mg/kg dry wt	< 20 ± 14	< 20 ± 14	< 20 ± 14	4
Total Recoverable Sodium	mg/kg dry wt	255 ± 49	261 ± 50	356 ± 63	-
Total Recoverable Strontium	mg/kg dry wt	31.5 ± 3.3	20.7 ± 2.2	40.1 ± 4.1	-
Total Recoverable Thallium	mg/kg dry wt	1.92 ± 0.27	2.35 ± 0.32	1.76 ± 0.25	
Total Recoverable Tin	mg/kg dry wt	4.2 ± 1.1	3.46 ± 0.94	6.6 ± 1.5	
Total Recoverable Uranium	mg/kg dry wt	0.686 ± 0.079	0.143 ± 0.067	0.330 ± 0.070	
Total Recoverable Vanadium	mg/kg dry wt	< 100 ± 67	< 100 ± 67	< 100 ± 67	7
Total Recoverable Zinc	mg/kg dry wt	173 ± 18	93.9 ± 9.8	263 ± 27	

The reported uncertainty is an expanded uncertainty with a level of confidence of approximately 95 percent (i.e. two standard deviations, calculated using a coverage factor of 2). Reported uncertainties are calculated from the performance of typical matrices, and do not include variation due to sampling.

For further information on uncertainty of measurement at Hill Laboratories, refer to the technical note on our website: www.hill-laboratories.com/files/Intro_To_UOM.pdf, or contact the laboratory.

Analyst's Comments

#1 It should be noted that the replicate analyses performed on this sample as part of our in-house Quality Assurance procedures showed greater variation than would normally be expected. This may reflect the heterogeneity of the sample.

SUMMARY OF METHODS

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Test	Method Description	Default Detection Limit	Samples
Environmental Solids Sample Preparation	Air dried at 35°C and sieved, <2mm fraction. Used for sample preparation. May contain a residual moisture content of 2-5%.		1-3, 5-8, 11-16, 18-23, 25-28
Metals extensive suite, screen level (33 metals)*	Dried sample, <2mm fraction. Nitric/Hydrochloric acid digestion, ICP-MS, screen level.	7	16, 19, 25-28
Total Petroleum Hydrocarbons in Soil	Sonication extraction in DCM, Silica cleanup, GC-FID analysis US EPA 8015B/MfE Petroleum Industry Guidelines. Tested on as received sample	1	1-3, 5-6
Dry Matter (Env)	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. US EPA 3550.	0.10 g/100g as rcvd	1-3, 5-6
Total Recoverable digestion	Nitric / hydrochloric acid digestion. US EPA 200.2.		1-3, 5-8, 11-16, 18-23, 25-28
Total Recoverable Antimony	Dried sample, sleved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.4 mg/kg dry wt	1-3, 5-8, 11-15, 18, 20-23

Test	Method Description	Default Detection Limit	Samples
Total Recoverable Arsenic	Dried sample, sleved as specified (if required), Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	2 mg/kg dry wt	1-3, 5-8, 11-15, 18, 20-23
Total Recoverable Cadmium	Dried sample, sleved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.10 mg/kg dry wt	1-3, 5-8, 11-15, 18, 20-23
Total Recoverable Chromium	Dried sample, sleved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	2 mg/kg dry wt	1-3, 5-8, 11-15, 18, 20-23
Total Recoverable Copper	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	2 mg/kg dry wt	1-3, 5-8, 11-15, 18, 20-23
Total Recoverable Lead	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.4 mg/kg dry wt	1-3, 5-8, 11-15, 18, 20-23
Total Recoverable Mercury	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.10 mg/kg dry wt	1-3, 5-8, 11-15, 18, 20-23
Total Recoverable Thallium	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.2 mg/kg dry wt	5, 11-15, 18, 20, 23
Total Recoverable Zinc	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	4 mg/kg dry wt	1-3, 5-8, 11-15, 18, 20-23

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

This report must not be reproduced, except in full, without the written consent of the signatory.

Ara Heron BSc (Tech)

Client Services Manager - Environmental Division

R J Hill Laboratories Limited
1 Clyde Street Fax
Private Bag 3205 Emailton 3240, New Zealand
Wet

Tel +64 7 858 2000 Fax +64 7 858 2001 Email mail@hill-labs.co.nz Web www.hill-labs.co.nz

ANALYSIS REPORT

Page 1 of 5

Client: Contact: Pattle Delamore Partners Ltd

Contact: Natalie Webster

C/- Pattle Delamore Partners Ltd

PO Box 9528 Newmarket AUCKLAND 1149 Lab No: 947769

Date Registered: 28-Oct-2011

Date Registered: Date Reported:

Quote No:

Order No: Client Reference:

AO2469100

46451

18-Nov-2011

Submitted By: Chris Foote

Amended Report

This report replaces an earlier report issued on the 16 Nov 2011 at 3:04 pm At the client's request, thallium results have been added to samples 947769.5, 11, 12, 13, 14, 15, 18, 20 & 23.

	Sample Name:	MOA014 0.1	MOA014 0.5	MOA014 1.0	MOA016 0.1	MOA016 0.
	Lab Number:	947769.1	947769.2	947769.3	947769.5	947769.6
Individual Tests						
Dry Matter	g/100g as rcvd	71	79	74	76	83
Total Recoverable Antimony	mg/kg dry wt	4.0	2.6	2.3	4.6	0.7
Total Recoverable Arsenic	mg/kg dry wt	88	101	111	187	550
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	0.15	< 0.10	0.22	< 0.10
Total Recoverable Chromium	mg/kg dry wt	8	10	9	13	21
Total Recoverable Copper	mg/kg dry wt	28	42	39	49	36
Total Recoverable Lead	mg/kg dry wt	35	52	18.9	82	8.8
Total Recoverable Mercury	mg/kg dry wt	1.28	2.9	1.98	3.9	1.18
Total Recoverable Thallium	mg/kg dry wt	-	-		1.2	-
Total Recoverable Zinc	mg/kg dry wt	68	74	28	148	44
Total Petroleum Hydrocarbons	s in Soil					
C7 - C9	mg/kg dry wt	< 11	< 10	< 10	< 9	<8
C10 - C14	mg/kg dry wt	< 30	< 20	< 20	< 20	< 20
C15 - C36	mg/kg dry wt	< 50	< 40	44	< 40	< 40
Total hydrocarbons (C7 - C36) mg/kg dry wt	< 80	< 70	< 70	< 70	< 70
	Sample Name:	MOA017 0.1	MOA017 0.5	MOA018 0.1	MOA018 0.5	MOA018 1.0
	Lab Number:	947769.7	947769.8	947769.11	947769.12	947769.13
Individual Tests						
Total Recoverable Antimony	mg/kg dry wt	2.1	0.9	12.8	14.1	19.0
Total Recoverable Arsenic	mg/kg dry wt	50	55	250	560	600
Total Recoverable Cadmium	mg/kg dry wt	0.30	0.10	0.54	0.39	< 0.10
Total Recoverable Chromium	mg/kg dry wt	12	12	15	8	7
Total Recoverable Copper	mg/kg dry wt	31	29	73	56	33
Total Recoverable Lead	mg/kg dry wt	58	71	140	139	123
Total Recoverable Mercury	mg/kg dry wt	1.10	0.60	10.4	16.7	29
Total Recoverable Thallium	mg/kg dry wt	-	17.	1.9	3.2	6.2
Total Recoverable Zinc	mg/kg dry wt	124	189	162	134	58
	Sample Name:	MOA019 0.1	MOA019 0.5	MOA019 1.0	MOA020 0.1	MOA020 0.5
	Lab Number:	947769.14	947769.15	947769.16	947769.18	947769.19
Individual Tests						
Total Recoverable Antimony	mg/kg dry wt	7.3	19.5		18.1	
Total Recoverable Arsenic	mg/kg dry wt	151	460	8	320	
Total Recoverable Cadmium	mg/kg dry wt	0.74	0.72	-	0.16	
Total Recoverable Chromium	mg/kg dry wt	15	10	-	8	

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised.

The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked *, which

aboratory are not accredited.

Sa	ample Name:	MOA019 0.1	MOA019 0.5	MOA019 1.0	MOA020 0.1	MOA020 0.
	Lab Number:	947769.14	947769.15	947769.16	947769.18	947769.19
Individual Tests	Lab Hamber.		1 271 121112	THE THEFT	h-5/11/15010.50	
Total Recoverable Copper	mg/kg dry wt	54	130	1	28	
Total Recoverable Lead	mg/kg dry wt	220	850		117	
Total Recoverable Mercury	and the second s	11.5	24		13.2	
Total Recoverable Thallium	mg/kg dry wt	1.3	3.9		2.0	
Total Recoverable Zinc	mg/kg dry wt	250	260		76	
Carrie Santalanta Colla	mg/kg dry wt	250	260	-	76	
Metals extensive suite, screen le				4.000		0.000
Total Recoverable Aluminium	mg/kg dry wt			1,800	•	3,300
Total Recoverable Antimony	mg/kg dry wt		•	16.6	-	27
Total Recoverable Arsenic	mg/kg dry wt		•	4,700		1,450
Total Recoverable Barium	mg/kg dry wt		•	158	*	260
Total Recoverable Bismuth	mg/kg dry wt			< 0.4	-	3.2
Total Recoverable Boron	mg/kg dry wt		+	< 20		< 20
Total Recoverable Cadmium	mg/kg dry wt			0.31	-	< 0.10
Total Recoverable Caesium	mg/kg dry wt	1	*	3.8	-	4.4
Total Recoverable Calcium	mg/kg dry wt			1,240	-	2,100
Total Recoverable Chromium	mg/kg dry wt			7	-	7
Total Recoverable Cobalt	mg/kg dry wt	-	-	0.5 #1	-	3.3
Total Recoverable Copper	mg/kg dry wt		-	42	-	31
Total Recoverable Iron	mg/kg dry wt		-	35,000	-	47,000
Total Recoverable Lanthanum	mg/kg dry wt			6.5	-	3.3
Total Recoverable Lead	mg/kg dry wt	A	-	68	-	250
Total Recoverable Lithium	mg/kg dry wt			0.4	-	1.8
Total Recoverable Magnesium	mg/kg dry wt		-	128		570
Total Recoverable Manganese	mg/kg dry wt		-	22	4	104
Total Recoverable Mercury	mg/kg dry wt		-	43	4	29
Total Recoverable Molybdenum	mg/kg dry wt			4.9	-	9.4
Total Recoverable Nickel	mg/kg dry wt			<2		3
Total Recoverable Phosphorus	mg/kg dry wt		12	153		410
Total Recoverable Potassium*	mg/kg dry wt			1,190		870
Total Recoverable Rubidium	mg/kg dry wt			5.5		5.9
Total Recoverable Selenium	mg/kg dry wt	i i		< 20	2	< 20
Total Recoverable Sodium	mg/kg dry wt			199#1	1	210
Total Recoverable Strontium	mg/kg dry wt		-	13.2	2	31
	According to the property of the restrict of the		-	5.0		5.0
Total Recoverable Thallium	mg/kg dry wt			1.5	3	9.1
Total Recoverable Tin	mg/kg dry wt	·	-		3	
Total Recoverable Uranium	mg/kg dry wt	· · ·	*	< 0.10		< 0.10
Total Recoverable Vanadium	mg/kg dry wt			< 100	-	< 100
Total Recoverable Zinc	mg/kg dry wt		****	83	•	62
Sa	mple Name:	MOA020 1.0	MOA024 0.1	MOA024 0.5	MOA024 1.0	MOA016 0. (duplicate)
	ab Number:	947769.20	947769.21	947769.22	947769.23	947769.25
ndividual Tests			The health as the			
Total Recoverable Antimony	mg/kg dry wt	7.0	4.8	0.5	23	
Total Recoverable Arsenic	mg/kg dry wt	550	46	18	500	
Total Recoverable Cadmium	mg/kg dry wt	0.16	0.18	< 0.10	0.16	
Total Recoverable Chromium	mg/kg dry wt	12	12	10	7	
Total Recoverable Copper	mg/kg dry wt	51	37	43	41	
otal Recoverable Lead	mg/kg dry wt	42	129	11.6	157	(4)
otal Recoverable Mercury	mg/kg dry wt	8.4	1.98	0.11	132	
Total Recoverable Thallium	mg/kg dry wt	2.0	-		2.8	
Total Recoverable Zinc	mg/kg dry wt	155	102	27	57	
Metals extensive suite, screen lev						
Total Recoverable Aluminium	mg/kg dry wt					12,300
otal Recoverable Antimony	mg/kg dry wt	3			- 2	5.2
otal Recoverable Antimony	mg/kg dry wt	-				0.2

Sa	ample Name:	MOA020 1.0	MOA024 0.1	MOA024 0.5	MOA024 1.0	MOA016 0. (duplicate)
	Lab Number:	947769.20	947769.21	947769.22	947769.23	947769.25
Metals extensive suite, screen le		311100.00	311130121	F11.13F145		
Total Recoverable Barium	mg/kg dry wt					82
Total Recoverable Bismuth	mg/kg dry wt					< 0.4
Total Recoverable Boron	mg/kg dry wt		1			< 20
Total Recoverable Cadmium	mg/kg dry wt			2	-	0.30
Total Recoverable Caesium	and the second state of th				-	2.3
	mg/kg dry wt					5,700
Total Recoverable Calcium	mg/kg dry wt		-	-	-	14
Total Recoverable Chromium	mg/kg dry wt		-		•	9.6
Total Recoverable Cobalt	mg/kg dry wt		-			5.0
Total Recoverable Copper	mg/kg dry wt					
Total Recoverable Iron	mg/kg dry wt		-			42,000
Total Recoverable Lanthanum	mg/kg dry wt		-	•		9.1
Total Recoverable Lead	mg/kg dry wt		-	-	-	78
Total Recoverable Lithium	mg/kg dry wt			•		7.3
Total Recoverable Magnesium	mg/kg dry wt	•				1,800
Total Recoverable Manganese	mg/kg dry wt	•	-	-	-	540
Total Recoverable Mercury	mg/kg dry wt		71	-	-	3.9
Total Recoverable Molybdenum	mg/kg dry wt			-	+	1.1
Total Recoverable Nickel	mg/kg dry wt	-	-	-	-	7
Total Recoverable Phosphorus	mg/kg dry wt				2	440
Total Recoverable Potassium*	mg/kg dry wt	-	-		-	1,140
Total Recoverable Rubidium	mg/kg dry wt				-	8.9
Total Recoverable Selenium	mg/kg dry wt		2		-	< 20
Total Recoverable Sodium	mg/kg dry wt		1			470
Total Recoverable Strontium	mg/kg dry wt			-		38
Total Recoverable Thallium	mg/kg dry wt		-		-	1.1
Total Recoverable Tin	mg/kg dry wt					1.2
Total Recoverable Uranium	mg/kg dry wt				1	0.29
	Children and the second					< 100
Total Recoverable Vanadium	mg/kg dry wt		-	· · · · · · ·		168
Total Recoverable Zinc	mg/kg dry wt	-		•	-	100
	mple Name:	MOA018 0.1 (duplicate)	MOA020 0.1 (duplicate)	MOA019 0.1 (duplicate)		
	ab Number:	947769.26	947769.27	947769.28		
Metals extensive suite, screen lev	TO COLORADO DO LA SECUCIONA PLANTA	40.000	0.700	10.000		
Total Recoverable Aluminium	mg/kg dry wt	16,300	6,700	13,600	-	
otal Recoverable Antimony	mg/kg dry wt	14.4	23	10.9	-	•
otal Recoverable Arsenic	mg/kg dry wt	220	380	230		
otal Recoverable Barium	mg/kg dry wt	220	149	191	-	
otal Recoverable Bismuth	mg/kg dry wt	< 0.4	1.0	< 0.4	1	
otal Recoverable Boron	mg/kg dry wt	< 20	< 20	< 20	-	•
otal Recoverable Cadmium	mg/kg dry wt	0.49	0.20	0.64	-	-
otal Recoverable Caesium	mg/kg dry wt	1.9	3.0	1.6	-	
Ottal Productional Cardinalii	mg/kg dry wt	4,300	2,700	6,000	-	
otal Recoverable Calcium	mg/kg dry wt		12	13	-	
	mg/kg dry wt	14				
otal Recoverable Calcium otal Recoverable Chromium	and the second second second second	14 10.0	5.9	9.8	*	-
otal Recoverable Calcium otal Recoverable Chromium otal Recoverable Cobalt	mg/kg dry wt	1911119		9.8 73		
otal Recoverable Calcium otal Recoverable Chromium otal Recoverable Cobalt otal Recoverable Copper	mg/kg dry wt mg/kg dry wt	10.0	5.9		-	
otal Recoverable Calcium otal Recoverable Chromium otal Recoverable Cobalt otal Recoverable Copper otal Recoverable Iron	mg/kg dry wt mg/kg dry wt mg/kg dry wt	10.0 78	5.9 32	73		
otal Recoverable Calcium otal Recoverable Chromium otal Recoverable Cobalt otal Recoverable Copper otal Recoverable Iron otal Recoverable Lanthanum	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	10.0 78 35,000	5.9 32 31,000	73 32,000		
otal Recoverable Calcium otal Recoverable Chromium otal Recoverable Cobalt otal Recoverable Copper otal Recoverable Iron otal Recoverable Lanthanum otal Recoverable Lead	mg/kg dry wt	10.0 78 35,000 16.3 156	5.9 32 31,000 5.1 131	73 32,000 7.4 240		
otal Recoverable Calcium otal Recoverable Chromium otal Recoverable Cobalt otal Recoverable Copper otal Recoverable Iron otal Recoverable Lanthanum otal Recoverable Lead otal Recoverable Lithium	mg/kg dry wt	10.0 78 35,000 16.3 156 6.8	5.9 32 31,000 5.1 131 3.1	73 32,000 7.4 240 5.0		•
otal Recoverable Calcium otal Recoverable Chromium otal Recoverable Cobalt otal Recoverable Copper otal Recoverable Iron otal Recoverable Lanthanum otal Recoverable Lead otal Recoverable Lithium otal Recoverable Magnesium	mg/kg dry wt	10.0 78 35,000 16.3 156 6.8 1,550	5.9 32 31,000 5.1 131 3.1 1,230	73 32,000 7.4 240 5.0 2,300	-	
otal Recoverable Calcium otal Recoverable Chromium otal Recoverable Cobalt otal Recoverable Copper otal Recoverable Iron otal Recoverable Lanthanum otal Recoverable Lead otal Recoverable Lithium otal Recoverable Magnesium otal Recoverable Manganese	mg/kg dry wt	10.0 78 35,000 16.3 156 6.8 1,550 1,160	5.9 32 31,000 5.1 131 3.1 1,230	73 32,000 7.4 240 5.0 2,300 620		
total Recoverable Calcium total Recoverable Chromium total Recoverable Cobalt total Recoverable Copper total Recoverable Iron total Recoverable Lanthanum total Recoverable Lead total Recoverable Lithium total Recoverable Magnesium total Recoverable Manganese total Recoverable Mercury	mg/kg dry wt	10.0 78 35,000 16.3 156 6.8 1,550 1,160	5.9 32 31,000 5.1 131 3.1 1,230 310 15.0	73 32,000 7.4 240 5.0 2,300 620 12.3		
otal Recoverable Calcium otal Recoverable Chromium otal Recoverable Cobalt otal Recoverable Copper otal Recoverable Iron otal Recoverable Lanthanum otal Recoverable Lead otal Recoverable Lithium otal Recoverable Magnesium	mg/kg dry wt	10.0 78 35,000 16.3 156 6.8 1,550 1,160	5.9 32 31,000 5.1 131 3.1 1,230	73 32,000 7.4 240 5.0 2,300 620		

S	ample Name:	MOA018 0.1 (duplicate)	MOA020 0.1 (duplicate)	MOA019 0.1 (duplicate)		
	Lab Number:	947769.26	947769.27	947769.28		
Metals extensive suite, screen le	evel (33 metals)					
Total Recoverable Potassium*	mg/kg dry wt	850	1,080	820	-	
Total Recoverable Rubidium	mg/kg dry wt	7.2	6.6	7.6	-	-
Total Recoverable Selenium	mg/kg dry wt	< 20	< 20	< 20	-	-
Total Recoverable Sodium	mg/kg dry wt	260	260	360	-	-
Total Recoverable Strontium	mg/kg dry wt	31	21	40	-	-
Total Recoverable Thallium	mg/kg dry wt	1.9	2.4	1.8	-	-
Total Recoverable Tin	mg/kg dry wt	4.2	3.5	6.6	-	-
Total Recoverable Uranium	mg/kg dry wt	0.69	0.14	0.33		
Total Recoverable Vanadium	mg/kg dry wt	< 100	< 100	< 100	-	-
Total Recoverable Zinc	mg/kg dry wt	173	94	260	2	-

Analyst's Comments

SUMMARY OF METHODS

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Test	Method Description	Default Detection Limit	Samples
Environmental Solids Sample Preparation	Air dried at 35°C and sieved, <2mm fraction. Used for sample preparation. May contain a residual moisture content of 2-5%.		1-3, 5-8, 11-16, 18-23, 25-28
Metals extensive suite, screen level (33 metals)*	Dried sample, <2mm fraction. Nitric/Hydrochloric acid digestion, ICP-MS, screen level.	7	16, 19, 25-28
Total Petroleum Hydrocarbons in Soil	Sonication extraction in DCM, Silica cleanup, GC-FID analysis US EPA 8015B/MfE Petroleum Industry Guidelines. Tested on as received sample		1-3, 5-6
Dry Matter (Env)	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. US EPA 3550.	0.10 g/100g as rcvd	1-3, 5-6
Total Recoverable digestion	Nitric / hydrochloric acid digestion. US EPA 200.2.	•	1-3, 5-8, 11-16, 18-23, 25-28
Total Recoverable Antimony	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.4 mg/kg dry wt	1-3, 5-8, 11-15, 18 20-23
Total Recoverable Arsenic	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	2 mg/kg dry wt	1-3, 5-8, 11-15, 18 20-23
Total Recoverable Cadmium	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.10 mg/kg dry wt	1-3, 5-8, 11-15, 18 20-23
Total Recoverable Chromium	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	2 mg/kg dry wt	1-3, 5-8, 11-15, 18 20-23
Total Recoverable Copper	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	2 mg/kg dry wt	1-3, 5-8, 11-15, 18 20-23
Total Recoverable Lead	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.4 mg/kg dry wt	1-3, 5-8, 11-15, 18 20-23
Total Recoverable Mercury	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.10 mg/kg dry wt	1-3, 5-8, 11-15, 18 20-23
Total Recoverable Thallium	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.2 mg/kg dry wt	5, 11-15, 18, 20, 23
Total Recoverable Zinc	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	4 mg/kg dry wt	1-3, 5-8, 11-15, 18, 20-23

^{#1} It should be noted that the replicate analyses performed on this sample as part of our in-house Quality Assurance procedures showed greater variation than would normally be expected. This may reflect the heterogeneity of the sample.

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

This report must not be reproduced, except in full, without the written consent of the signatory.

Ara Heron BSc (Tech)

Client Services Manager - Environmental Division

Lab No: 947769 v 6 Hill Laboratories Page 5 of 5

PDP Auckland

E DELAMORE PARTNERS LTD

Address (Refer to base of sheet):

From: Pattle Delamore Partners Ltd

No of Fractions 24

NOTE: P. of these san.,

form and emailing

218111111111111111111111111111111111111		
0319477694		To: _
0319477694	urch	Quote

ses

Hills Las No.: 4645) PDP Job No.: 1402469100

Submitted by: Chri	3 Fo	see	Ph No.: <u>OQ</u>	5236900 PDP JO	06 No.: <u>AOZ4</u> 6	ना ८०
Chain of Custody R	Record					
Sent:	4	/		p. Erchilled Temp.: 20.5°C Note	es:	
Name: Chris 1		2	Name: Pagar			
Signature:			Signature:			OCT 28 PM 1:36
Date and time: 26-10-	11 8	1309	Date and time:			
Results by: Email	il submitter	: Chr	is. Foote @pdp.co.n	nz Mail (address below)	Priority:	Normal 19-High Durgent
□ Email	l other:	Nata	alië, Webziler @pap.co.n	nz	Results require	ed by: / /
Invoice to: PDP		□ Oth	er:	X		
Sample ID	Sample type	No. bottles		Analyses requested	***	Notes
MOAD14 0.1	S	١	HOLD COLD			
MO4014 0-5	S		11 11			
MOA0141.0	S	1	1) 11			
MOA014 1.5	5	1	- D (N			
MOA 016 0.1	S	1	1) ()			
MU14016 0.5		1	11 (1			
MOIA 017 G.1	S	1	11 11			
MOA01205	2	1	1) (1)	for any and a second		
MOA017@10	2)	11 (1			
MUA0171.5	S	1	1) (1)			
MO4018 0-1	S	1	11 (1			
MOA0180-5	کہ	1	10 11			
MOA018110	5)	te ti			
MOA 01901	S	1	(((
MOA019 0.5	S	ì	((((
MUA019 1.0	S	1	(1 (1			
MOA019 1.5	\$		(1 11			
MOA020 0.1	S	1	10 11			
MU402005	S	1	ננ ני			
MOA0201.6	5	1	(1 (1			
104020 115	5	1	1, 1,			
MOA02404	S	1	61 11			
Sample type: S Soll SED Se	ediment	GW Gro	oundwater SAL Seawater/sall ota TW Tradewaste	line FW Freshwater LEACH I WW Wastewater P Potab		Beothermal

Note: Samples may contain dangerous or hazardous substances

Page t of Z

Request i. Analyses

NOTE: Please acknowledge receipt

ATTLE DELAMORE PAI			request	/ Allalyso		f these samples by signing this orm and emailing to submitter.
From: Pattle Delamo					To: Hills	L ₄ >
Address (Refer to base o			Auckland PDP Wellington	☐ PDP Christchurch	Quote No.: 4	
Submitted by: Chr.	is for	ite_	Ph No.:		PDP Job No.: 14	07469100
Chain of Custody l	Record					
Sent:	DIAM WAS DEAD	deremone investigation	Received: TRoom temp.	☐ Chilled Temp.: 20.5	NAME OF TAXABLE PARTY OF TAXABLE PARTY.	PERCENTIAL CONTROL CON
Name: Chris Fo	Siche		Name:		Market .	
Signature: CFOCK	٤		Signature:			GOT DO PM1 DC
Date and time: 28-10	5-11 8	130am	Date and time:			OCT 28 PM1:36
Results by: Ema	il submitter	: Chi	ris, Foce @pdp.co.nz	Mail (address bo	elow) Priorit	
□Ema	il other:	Natali	e. Webster @pdp.co.nz	☐ Fax (number be	ow) Resul	ts required by: / /
Invoice to: PDP		☐ Other				
Sample ID	Sample type	No. bottles	An	alyses requested		Notes
MOA0240.5	5	1	HOLD COLD			
M04024110	Ş	Maril	(1			
MO AOZA15	S		l, j			
-						
				4100		
			and the second			
Sample type: S Soil		GW Grou	indwater SAL Seawater/saline	FW Freshwater	LEACH Leachate	GEO Geothermal

Note: Samples may contain dangerous or hazardous substances

WW Wastewater

P Potable

TW Tradewaste

Page Z of Z

SED Sediment

BIO Biota

Other:

R J Hill Laboratories Limited 1 Clyde Street Private Bag 3205 Hamilton 3240, New Zealand

Tel +64 7 858 2000 Fax +64 7 858 2001 Email mail@hill-labs.co.nz Web www.hill-labs.co.nz

ANALYSIS REPORT

Page 1 of 4

SUPv2

Client: Contact: Pattle Delamore Partners Ltd

: Natalie Webster

C/- Pattle Delamore Partners Ltd

PO Box 9528 Newmarket AUCKLAND 1149 Date Registered: Date Reported: Quote No:

Lab No:

Order No:

Client Reference: AO2469100 Submitted By: AO2469100 Chris Foote

947724 28-Oct-2011

18-Nov-2011

46451

Chris Foote

Amended Report

This report replaces an earlier report issued on the 17 Nov 2011 at 10:29 am At the client's request, a thallium result has been added to sample

8	Sample Name:		MOA001 0.5 27-Oct-2011	MOA001 1.0 27-Oct-2011	MOA002 0.1 27-Oct-2011
	Lab Number:	27-Oct-2011 947724.1	947724.2	947724.3	947724.5
Individual Tests	Lab Nulliber:	STITE TI	941124.Z	541724.5	547724.5
Dry Matter	a/100= == ===d				68
Total Recoverable Antimony	g/100g as rovd	0.70 ± 0.29	470 + 0.44	67.40	1
and replaced the production of the state of	mg/kg dry wt	an ration.	1.72 ± 0.41	6.7 ± 1.3	7.5 ± 1.4
Total Recoverable Arsenic Total Recoverable Cadmium	mg/kg dry wt	24.1 ± 2.8	95.6 ± 9.7	185 ± 19	65.5 ± 6.7
	mg/kg dry wt	0.185 ± 0.073	< 0.10 ± 0.067	< 0.10 ± 0.067	0.122 ± 0.068
Total Recoverable Chromium	mg/kg dry wt	48.3 ± 5.1	6.8 ± 1.5	8.7 ± 1.6	8.3 ± 1.6
Total Recoverable Copper	mg/kg dry wt	31.8 ± 4.7	35.4 ± 5.2	48.4 ± 6.9	21.6 ± 3.3
Total Recoverable Lead	mg/kg dry wt	33.4 ± 4.7	9.9 ± 1.5	6.9 ± 1.0	31.7 ± 4.5
Total Recoverable Mercury	mg/kg dry wt	0.334 ± 0.077	0.488 ± 0.088	2.24 ± 0.28	0.394 ± 0.081
Total Recoverable Zinc	mg/kg dry wt	83.6 ± 8.8	24.8 ± 3.7	27.2 ± 3.8	52.8 ± 5.9
Total Petroleum Hydrocarbons					South of part
C7 - C9	mg/kg dry wt	-		-	< 10 ± 5.5
C10 - C14	mg/kg dry wt		-	-	< 20 ± 7.8
C15 - C36	mg/kg dry wt	-			< 40 ± 9.5
Total hydrocarbons (C7 - C36)	mg/kg dry wt				< 70 ± 14
S	ample Name:	MOA002 0.5	MOA006 0.1	MOA006 0.5	MOA006 1.0
		27-Oct-2011	27-Oct-2011	27-Oct-2011	27-Oct-2011
	Lab Number:	947724.6	947724.8	947724.9	947724.10
Individual Tests					
Dry Matter	g/100g as rovd	78			
Total Recoverable Antimony	mg/kg dry wt	1.68 ± 0.40	3.31 ± 0.65	2.14 ± 0.47	1.66 ± 0.40
Total Recoverable Arsenic	mg/kg dry wt	54.1 ± 5.6	39.4 ± 4.2	57.6 ± 6.0	36.9 ± 4.0
Total Recoverable Cadmium	mg/kg dry wt	< 0.10 ± 0.067	0.364 ± 0.092	< 0.10 ± 0.067	< 0.10 ± 0.067
Total Recoverable Chromium	mg/kg dry wt	7.7 ± 1.6	12.0 ± 1.8	9.0 ± 1.6	5.8 ± 1.5
Total Recoverable Copper	mg/kg dry wt	26.4 ± 4.0	30.1 ± 4.5	23.8 ± 3.6	15.6 ± 2.6
Total Recoverable Lead	mg/kg dry wt	13.8 ± 2.0	35.2 ± 5.0	7.0 ± 1.1	5.16 ± 0.77
Total Recoverable Mercury	mg/kg dry wt	0.360 ± 0.079	0.63 ± 0.11	0.514 ± 0.091	0.82 ± 0.12
Total Recoverable Zinc	mg/kg dry wt	46.0 ± 5.4	99 ± 11	14.7 ± 3.1	6.8 ± 2.8
Total Petroleum Hydrocarbons i	n Soil				
C7 - C9	mg/kg dry wt	< 9 ± 5.4	-		+
C10 - C14	mg/kg dry wt	< 20 ± 7.7			4
C15 - C36	mg/kg dry wt	< 40 ± 9.4			-
Total hydrocarbons (C7 - C36)	mg/kg dry wt	< 70 ± 14		The second second	

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised.

The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked *, which borstory are not accredited.

S	ample Name:	MOA011 0.1	MOA011 0.5	MOA021 0.1	MOA021 0.5
		27-Oct-2011	27-Oct-2011	27-Oct-2011	27-Oct-2011
	Lab Number:	947724.11	947724.12	947724.13	947724.14
Individual Tests					
Dry Matter	g/100g as rcvd		84	85	85
Total Recoverable Antimony	mg/kg dry wt	1.20 ± 0.34	1.18 ± 0.34	5.4 ± 1.1	7.2 ± 1.4
Total Recoverable Arsenic	mg/kg dry wt	25.2 ± 2.9	31.0 ± 3.4	87.0 ± 8.8	206 ± 21
Total Recoverable Cadmium	mg/kg dry wt	0.336 ± 0.089	0.306 ± 0.085	0.172 ± 0.072	< 0.10 ± 0.067
Total Recoverable Chromium	mg/kg dry wt	15.4 ± 2.1	15.0 ± 2.0	19.7 ± 2.4	9.7 ± 1.7
Total Recoverable Copper	mg/kg dry wt	35.6 ± 5.2	132 ± 19	62.4 ± 8.9	152 ± 22
Total Recoverable Lead	mg/kg dry wt	41.9 ± 5.9	29.5 ± 4.2	81 ± 12	67.8 ± 9.5
Total Recoverable Mercury	mg/kg dry wt	0.64 ± 0.11	0.257 ± 0.073	0.92 ± 0.13	1.39 ± 0.18
Total Recoverable Zinc	mg/kg dry wt	99 ± 11	69.8 ± 7.5	138 ± 15	59.3 ± 6.5
Polycyclic Aromatic Hydrocarbor	ns Screening in So	il .			
Acenaphthene	mg/kg dry wt	*		< 0.03 ± 0.0099	< 0.03 ± 0.0097
Acenaphthylene	mg/kg dry wt	•		0.0311 ± 0.0072	0.0494 ± 0.0080
Anthracene	mg/kg dry wt		-	0.052 ± 0.017	0.084 ± 0.026
Benzo[a]anthracene	mg/kg dry wt	-	*	0.245 ± 0.064	0.50 ± 0.13
Benzo[a]pyrene (BAP)	mg/kg dry wt			0.312 ± 0.025	0.513 ± 0.040
Benzo[b]fluoranthene + Benzo[j] fluoranthene	mg/kg dry wt	-		0.54 ± 0.12	1.03 ± 0.21
Benzo[g,h,i]perylene	mg/kg dry wt	¥	•	0.353 ± 0.062	0.434 ± 0.075
Benzo[k]fluoranthene	mg/kg dry wt			0.204 ± 0.027	0.402 ± 0.052
Chrysene	mg/kg dry wt	-	-	0.237 ± 0.036	0.527 ± 0.079
Dibenzo[a,h]anthracene	mg/kg dry wt	-	*	0.072 ± 0.012	0.100 ± 0.015
Fluoranthene	mg/kg dry wt	÷	+	0.592 ± 0.060	1.08 ± 0.11
Fluorene	mg/kg dry wt	+		< 0.03 ± 0.0074	< 0.03 ± 0.0073
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt			0.302 ± 0.029	0.423 ± 0.040
Naphthalene	mg/kg dry wt	-	-	< 0.14 ± 0.046	< 0.14 ± 0.045
Phenanthrene	mg/kg dry wt		-	0.258 ± 0.037	0.505 ± 0.071
Pyrene	mg/kg dry wt		-	0.694 ± 0.090	1.00 ± 0.13
Total Petroleum Hydrocarbons in	Soil		77.7		314-51
C7 - C9	mg/kg dry wt		< 8 ± 5.4	< 9 ± 5.4	-
C10 - C14	mg/kg dry wt	4	< 20 ± 7.6	< 20 ± 7.6	
C15 - C36	mg/kg dry wt		< 40 ± 9.3	67.9 ± 9.4	
Total hydrocarbons (C7 - C36)	mg/kg dry wt		< 70 ± 14	< 70 ± 14	•
Sa	mple Name:	MOA021 1.0 27-Oct-2011	MOA012 0.5 27-Oct-2011	MOA012 0.1 27-Oct-2011	
ı	ab Number:	947724.15	947724.16	947724.17	
Individual Tests					
112111122111121111	g/100g as rovd	78	80		
Total Recoverable Antimony	mg/kg dry wt	9.4 ± 1.8	2.67 ± 0.55	1.60 ± 0.39	
Total Recoverable Arsenic	mg/kg dry wt	270 ± 28	86.3 ± 8.8	34.9 ± 3.8	-
Total Recoverable Cadmium	mg/kg dry wt	< 0.10 ± 0.067	0.247 ± 0.079	< 0.10 ± 0.067	1
Total Recoverable Chromium	mg/kg dry wt	7.2 ± 1.6	12.3 ± 1.9	13.6 ± 1.9	
Total Recoverable Copper	mg/kg dry wt	59.0 ± 8.4	92 ± 13	38.2 ± 5.6	
Total Recoverable Lead	mg/kg dry wt	83 ± 12	119 ± 17	34.7 ± 4.9	+
Total Recoverable Mercury	mg/kg dry wt	6.27 ± 0.76	3.75 ± 0.46	0.570 ± 0.095	-
Total Recoverable Thallium	mg/kg dry wt	1.89 ± 0.27			
Total Recoverable Zinc	mg/kg dry wt	37.4 ± 4.6	161 ± 17	90.0 ± 9.4	
Polycyclic Aromatic Hydrocarbon					
Acenaphthene	mg/kg dry wt	0.070 ± 0.021			
Acenaphthylene	mg/kg dry wt	0.545 ± 0.050	-		
Anthracene	mg/kg dry wt	1.58 ± 0.48		-	12
Benzo[a]anthracene	mg/kg dry wt	3.9 ± 1.1			
Benzo[a]pyrene (BAP)	mg/kg dry wt	3.57 ± 0.28			-
Benzo[b]fluoranthene + Benzo[j]	mg/kg dry wt	3.93 ± 0.81	Ŧ		5
	mg/kg dry wt	1.95 ± 0.34			

Sample Type: Soil					
	Sample Name:	MOA021 1.0 27-Oct-2011	MOA012 0.5 27-Oct-2011	MOA012 0.1 27-Oct-2011	
	Lab Number:	947724.15	947724.16	947724.17	
Polycyclic Aromatic Hydrocari	oons Screening in So	ii			
Benzo[k]fluoranthene	mg/kg dry wt	1.71 ± 0.22		•	-
Chrysene	mg/kg dry wt	2.72 ± 0.41		*	-
Dibenzo[a,h]anthracene	mg/kg dry wt	0.412 ± 0.054			
Fluoranthene	mg/kg dry wt	11.1 ± 1.2			-
Fluorene	mg/kg dry wt	0.306 ± 0.037			
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	1.87 ± 0.18	-	-	-
Naphthalene	mg/kg dry wt	0.139 ± 0.046			*
Phenanthrene	mg/kg dry wt	9.3 ± 1.3	1	-	
Pyrene	mg/kg dry wt	9.3 ± 1.2			
Total Petroleum Hydrocarbons	s in Soil				
C7 - C9	mg/kg dry wt	< 9 ± 5.4	< 9 ± 5.4		•
C10 - C14	mg/kg dry wt	< 20 ± 7.6	< 20 ± 7.7		
C15 - C36	mg/kg dry wt	115 ± 16	< 40 ± 9.4		*
Total hydrocarbons (C7 - C36) mg/kg dry wt	115 ± 18	< 70 ± 14		*

The reported uncertainty is an expanded uncertainty with a level of confidence of approximately 95 percent (i.e. two standard deviations, calculated using a coverage factor of 2). Reported uncertainties are calculated from the performance of typical matrices, and do not include variation due to sampling.

For further information on uncertainty of measurement at Hill Laboratories, refer to the technical note on our website: www.hill-laboratories.com/files/Intro_To_UOM.pdf, or contact the laboratory.

Analyst's Comments

Appendix No.1 - Total Petroleum Hydrocarbon Chromatograms

SUMMARY OF METHODS

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Test	Method Description	Default Detection Limit	Samples
Environmental Solids Sample Preparation	Air dried at 35°C and sieved, <2mm fraction. Used for sample preparation. May contain a residual moisture content of 2-5%.		1-3, 5-6, 8-17
Polycyclic Aromatic Hydrocarbons Screening in Soil	Sonication extraction, Dilution or SPE cleanup (if required), GC-MS SIM analysis (modified US EPA 8270). Tested on as received sample.	·	13-15
Total Petroleum Hydrocarbons in Soil	Sonication extraction in DCM, Silica cleanup, GC-FID analysis US EPA 8015B/MfE Petroleum Industry Guidelines. Tested on as received sample		5-6, 12-13 15-16
Dry Matter (Env)	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. US EPA 3550.	0.10 g/100g as rovd	5-6, 12-16
Total Recoverable digestion	Nitric / hydrochloric acid digestion. US EPA 200.2.	1	1-3, 5-6, 8-17
Total Recoverable Antimony	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.4 mg/kg dry wt	1-3, 5-6, 8-17
Total Recoverable Arsenic	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	2 mg/kg dry wt	1-3, 5-6, 8-17
Total Recoverable Cadmium	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.10 mg/kg dry wt	1-3, 5-6, 8-17
Total Recoverable Chromium	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	2 mg/kg dry wt	1-3, 5-6, 8-17
Total Recoverable Copper	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	2 mg/kg dry wt	1-3, 5-6, 8-17
Total Recoverable Lead	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.4 mg/kg dry wt	1-3, 5-6, 8-17

Sample Type: Soil							
Test	Method Description	Default Detection Limit	Samples				
Total Recoverable Mercury	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.		1-3, 5-6, 8-17				
Total Recoverable Thallium	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.2 mg/kg dry wt	15				
Total Recoverable Zinc	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	4 mg/kg dry wt	1-3, 5-6, 8-17				

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

This report must not be reproduced, except in full, without the written consent of the signatory.

Ara Heron BSc (Tech)

Client Services Manager - Environmental Division

C7

C10

C15

C20

C25

C30 C34

C44

Appendix EAcute Arsenic Report

PATTLE DELAMORE PARTNERS LTD

Level 1, iSOFT House 111 Customhouse Quay, Wellington PO Box 6136, Wellington, New Zealand Tel +4 **471 4130** Fax +4 **471 4131** Web Site **http://www.pdp.co.nz** Auckland **Wellington** Christchurch

15 November 2011

Nick Kim
Waikato Regional Council
Private Bag 3038
Waikato Mail Centre
HAMILTON 3240

Dear Nick

Calculation of Acceptable Soil Concentrations for Acute Exposure to Arsenic in Soil

Summary

Elevated concentrations of arsenic have been found in surface soil within the residential neighbourhood of Moanataiari, Thames. The concentrations are sufficiently high to raise the possibility that ingestion of a relatively large amount of soil by a small child could cause acute health effects. This report calculates soil concentration values at which the onset of health effects might occur and at which a lethal dose might be obtained, for various short-term (acute) soil ingestion rates. The focus of this study is small children as the most vulnerable group. Acute effects are much less likely in adults, because they are less likely to ingest large amounts of soil and have greater body weights.

Review of the scientific literature suggests that a reasonable reference dose for acute toxicity, at which the onset of health effects in people might be observed, is 0.015 mg/kg-bw. Similarly, a lethal dose has been assessed as being about 1 mg/kg-bw. A high, but reasonable, rate of daily soil ingestion for a child with pica behaviour is recommended as 5000 mg (close to a teaspoon-full). The average rate of soil ingestion for a normal child is much smaller at about 50 mg/day with an upper-bound rate for a normal child of the order of 200 mg/day.

At an ingestion rate of 5000 mg/day and a reference dose of 0.015 mg/kg-bw, the calculated acceptable soil concentration threshold, assuming 100% bioavailability, is 39 mg/kg. This is lower than some of the concentrations measured within surface soil at Moanataiari, indicating a potential acute risk.

At an ingestion rate of 5000 mg/day and the potentially lethal dose of 1 mg/kg-bw, the potentially lethal soil concentration is 2,600 mg/kg. This is much higher than any surface soil concentration measured at Moanataiari to date indicating minimal risk of a lethal dose, but lower than concentrations measured at 1 m below the ground.

Arsenic in soil is not 100% bioavailable. The calculated acceptable and potentially lethal soil concentrations will therefore be conservative (low) by a factor of somewhere between about 1.4 and about 25. The actual bioavailability of the arsenic in the Moanataiari soil is not known and quite probably varies from place to place.

Population statistics and the prevalence of the soil pica in children suggests that very few if any children at Moanataiari will actually ingest dangerous amounts of soil, but the risk cannot be dismissed. As the measured concentrations exceed the Soil Concentration Standard for arsenic developed for the new soil contamination National Environmental Standard, a risk requiring management is indicated for long-term exposure. Further sampling is required.

1.0 Introduction

Waikato Regional Council is undertaking a sampling programme to ascertain soil concentration of various contaminants in soil within the residential area of Moanataiari, Thames, which has been built on reclaimed land. The reclamation included the deposition of mining waste.

Preliminary soil sampling has found elevated concentrations of arsenic, ranging from 5000 mg/kg within waste at about 1 m depth to 21 – 350 mg/kg in surface samples. All of the surface concentrations and deeper samples exceed the Soil Concentration Standard¹ (SCS) of 20 mg/kg for the residential use scenario (MfE, 2011). The exceedances for surface soil indicate a risk to human health for at least young children for the chronic (long-term) exposure assumed for the SCS. The elevated concentrations raise the possibility of there also being an acute risk for residents accidentally or deliberately ingesting larger amounts of soil than assumed for the SCS derivation, as a one-off or short term exposure. This would include soil-pica² behaviour of some children.

The Waikato Regional Council has engaged Pattle Delamore Partners Limited to consider whether the detected concentrations at Moanataiari could pose an acute risk. This report presents the result of the study. The study is intended to contribute to decisions made by various regulatory authorities regarding further investigations and the public health advice provided to residents.

Given the shortness of time in preparing this report, the views expressed are preliminary.

2.0 Study Approach

The basic approach to the study is to calculate allowable soil concentrations that result in a daily intake (expressed as mg/kg-bw/day) equivalent to a safe or reference dose derived for acute exposure. The equation used for these calculations is:

Estimated exposure dose = (arsenic concentration in soil) x (intake rate of soil) x (bioavailability factor) / body weight

An acute reference dose is required. The relatively limited literature is reviewed in the next section. The approach taken for this was to consider a number of review studies and also a number of studies similar to this one, in which a reference dose was required to calculate potentially acutely toxic soil concentrations. In some instances the original papers referenced by these studies were consulted, but time constraints generally did not permit this.

An intake rate is also required. Both intake rate (mg/day) and body weight (kg) are dependent on the particular exposed person. The choice of intake rate must be made hand-in-hand with the choice of body weight, or in other words a critical receptor must be determined. Typically, a small child is more likely to ingest relatively large amounts of soil (grams per day) than an adult and with a lower body weight, the normalised dose is larger. The small child is therefore most likely the critical receptor. For consistency with MfE (2011) a 13 kg toddler has been chosen as the critical receptor. Likely soil ingestion rates for a small child are explored in Section 4.

The equation above also includes a bioavailability factor. It is typical in contaminated land practice to assume 100% bioavailability for the contaminant in soil. In other words, 100% of the contaminant measured in the soil (using total recoverable analysis) passes through the gastro-intestinal tract into the blood stream, where the contaminant is then available to cause various adverse effects on the health of the person. This is the approach adopted by MfE (2011) in deriving chronic SCSs and is also the approach adopted by many overseas jurisdictions. However, it is well-known that

¹ Developed for the National Environmental Standard (NES) for Assessing and Managing Contaminants in Soil to Protect Human Health (MfE, 2011).

² Pica is a condition where individuals, typically children, ingest non-food items. Soil-pica is specifically related to ingestion of soil.

arsenic in soil is not 100% bioavailable (Juhasz et al, 2003) and some studies attempt to account for reduced bioavailability.

The calculations in this study (section 5) have assumed 100% bioavailability (bioavailability factor = 1), but a discussion on the range of possible bioavailability factors is included in Section 6.

3.0 Review of Acute Toxicity of Arsenic

3.1 Symptoms of Acute Arsenic Toxicity

There is very little information on acute toxicity of arsenic published in the scientific literature. Most of the cases of acute arsenic toxicity reported are from accidental ingestion of high concentrations of arsenic in insecticides or pesticides and, less commonly, suicide attempts.

Small amounts of arsenic (<5 mg) result in vomiting and diarrhoea but this usually resolves within 12 hours (Kingston et al, 1993). Other clinical manifestations of low-dose acute arsenic toxicity include nausea, vomiting, colicky abdominal pain, profuse watery diarrhoea and excessive salivation (Ratnaike, 2003).

Ingestion of large doses of arsenic may lead to acute symptoms within 30 – 60 minutes, but the effects may be delayed when the arsenic is taken with food. Acute gastrointestinal syndrome is the most common presentation of acute arsenic poisoning. This syndrome starts with a metallic or garlic-like taste associated with dry mouth, burning lips and dysphagia (difficulty in swallowing) (WHO, 2001). At higher doses symptoms may also include acute psychosis, skin rashes, peripheral neuropathy (with symptoms ranging from pin and needles sensations in hands and feet to loss of fine motor control), cardiomyopathy (heart muscle weakness), pulmonary oedema and seizures (Ratnaike, 2003). Other consequences of acute arsenic poisoning can include bone-marrow depression, haemolysis (breaking open of the red blood cells), hepatomegaly (abnormal enlargement of the liver), melanosis (abnormally dark pigmentation of the skin) and encephalopathy (ATSDR, 2007; WHO, 2001).

The extent of arsenic poisoning depends on various factors such as dose, individual susceptibility (there is some evidence that Asian populations are less susceptible to some of the effects of arsenic poisoning) and the age of the affected individuals (due to differences in body weight) (Schuhmacher-Wolz et al., 2009).

For arsenic, the United States Agency for Toxic Substances and Disease Registry (ATSDR) consider oral exposure (e.g. ingestion of contaminated soil) to be the most important route for acute toxicity and contaminated soils pose a particular risk to children due to soil-pica and hand-to-mouth activities (ATSDR, 2007).

3.2 Acute Oral Reference Dose (Non-Lethal Health Effects)

A review of the literature found three sub-lethal reference doses reported in literature (ATSDR, 2007; US EPA, 2001 and Tsuji *et al*, 2004). International agencies such as the World Health Organization (WHO) do not appear to have derived an acute reference dose. Most attention has been paid to the long-term chronic effects, particularly carcinogenicity.

ATSDR derived a minimal risk level (MRL) for acute exposure (1 to 14 days) to arsenic of 0.005 mg/kg-bw/day. This value was derived from the findings of a poisoning case in Japan of 220 people ingesting contaminated soy sauce (ATSDR, 2007). In this study the arsenic intake was estimated to be 3 mg/day (or 0.05 mg/kg-bw/day assuming an average Asian body weight of 55 kg). An uncertainty factor of 10 was then applied to derive a short term (exposure of less than 14 days) MRL for arsenic of 0.005 mg/kg-bw/day. Facial oedema and gastrointestinal symptoms (nausea, vomiting and diarrhoea) were considered by ATSDR to be the critical effects for which the acute MRL was derived to protect against.

An MRL is a screening level defined as an estimate of daily human exposure to a substance that is likely to be without an appreciable risk of adverse effects (ATSDR, 2007). Exposure to a level above the MRL does not mean that adverse health effects will occur. ATSDR also notes that MRL can be viewed as a mechanism to identify those hazardous waste sites that are not expected to cause adverse health effects.

Region 8 of the US EPA (US EPA, 2001) (not seen but cited in a variety of US EPA risk assessment documents) published a study of acute and chronic reference doses intended to apply to exposures of one to 14 days and 15 days to seven years. The report concludes that a NOAEL (no observed adverse effect level) value of 0.015 mg/kg-bw/day from a study by Mazumder et al (1998) can be used for acute and sub-chronic reference dose values, with an uncertainty factor of 1. Alternately, the LOAEL (lowest observed adverse effect level) of 0.05 mg/kg-bw/day and an uncertainty factor of 3 (for extrapolation from the LOAEL to the NOAEL) could be selected from this same study. A full factor of 10 was not employed in US EPA (2001) because the NOAEL "is likely at an exposure only slightly below the effect level".

Tsuji et al (2004) recommended an acute reference dose for children of 0.015 mg/kg-bw/day. Although this study was published before the final ATSDR was released it contains a wider range of studies and more recent data than that considered by ATSDR³ (seven studies including the soy sauce incident in Japan, ingestion of contaminated groundwater in the US, ingestion of Fowler's Solution (1% As_2O_3) and recent data from the use of arsenic-containing drugs used to treat leukaemia (IV infusion)). An uncertainty factor of 3 was used to derive the acute reference dose. Tsuji et al notes that the database for acute or relatively short-term effects is less robust than that for sub-chronic and chronic exposures. Their rationale for using an uncertainty factor of 3 instead of 10 was that:

- : the NOAEL appears to be within an order of magnitude or less of the LOAEL data;
- : prevalence of effects is based on study populations that are generally 0-9 years old who have had cumulative exposure (i.e. higher prevalence of effects) and possibly a lower calculated dose-per-body-weight than an average dose for younger ages;
- : exposed populations include malnourished children and other sensitive individuals, which may increase susceptibility to arsenic;
- : populations evaluated for sub-chronic effects often had *in utero* exposure via drinking water. In a risk assessment application for arsenic in soil, *in utero* exposure would be low because of the lower soil ingestion rates of adults/pregnant women compared to children;
- doses for water exposure in some studies do not account for additional exposure from inorganic arsenic in foods or drinking water; and
- * many of the studies include broad categories of exposure in which misclassification (e.g. use of an average or median dose for a group with a range of exposure) has likely led to underestimation of exposure in subjects exhibiting effects, and thereby potential downward bias in the LOAEL.

We consider the acute reference dose derived by Tsuji et al (2004) to be more robust than ATSDR (2007) due to the wider range of studies used to derive the value and better consideration of biases in the original data.

3.3 Acute Oral Reference Dose (Lethal)

There is a large number of studies in humans on the lethal effects of ingestion of inorganic arsenic compounds and in most cases toxicity has occurred from accidental, suicidal, homicidal, by medical ingestion of arsenic powders or

A02469101 R001 Final.doc, 15/11/2011

³ ATSDR (2007) contains the same discussion for the acute MRL as the 2001 version of the same document. The authors of ATSDR (2007) do not appear to be aware of Tsuji et al (2004).

solutions, or by consumption of contaminated food or drinking water (ATSDR, 2007). However, in most cases reliable estimates of the ingested dose are not available, meaning quantitative information on lethal dose in humans is sparse (ATSDR, 2007). A literature review conducted by ATSDR found that the lethal dose of arsenic was probably between 1 and 3 mg/kg-bw of arsenic.

Washington State Office of Environmental Health concluded that the lethal dose of arsenic in humans was between 0.32 and 2.37 mg /kg-bw, with the best estimate of 1 mg /kg-bw (White, 1999). Another study has concluded that the lethal dose of inorganic arsenic in acute poisoning ranged from 100 mg to 300 mg, with the estimated acute lethal dose in humans being about 0.6 mg/kg-bw/day (Ratnaike, 2003).

Based on these studies, we have adopted an acute lethal oral reference dose for arsenic of 1 mg/kg-bw.

3.4 Limitations in Acute Oral Reference Doses

There are a number of uncertainties associated with the estimates of the acute oral reference doses. The data used to derive these reference doses is limited (for the non-lethal acute toxicity reference dose only seven case studies were used to derive this value). In most of these studies (the two leukaemia-treatment studies may be the exception) the doses involved have been estimated. None of these studies involved exposure to arsenic in soil. In most cases the chemical ingested was in soluble form which is likely to be more bio-accessible than the forms of arsenic found in the soil. Therefore, the dose from ingesting arsenic contaminated soil required to produce the same toxicological effect may be significantly different (higher).

A further limitation of the data used in these studies is that the dose estimates are not minimum doses required to produce the specific toxicological endpoint; rather they are the doses that were observed to result in a specific toxicological endpoint. Therefore the actual minimum dose to produce the specific toxicological endpoint could be lower.

Also, the chemical form (or speciation) of arsenic is uncertain in some of the studies. There are two main chemical forms which commonly occur; Arsenic (III) and Arsenic (V). Arsenic (III) is regarded as being much more toxic than Arsenic (V), however Arsenic (V) is the predominate form found in the environment (Wilson et al, 2010). In some studies used to derive the acute reference doses the arsenic ingested has been the more toxic Arsenic (III). This may mean the calculated soil concentrations based on these reference doses overestimate the risk.

As noted above, ATSDR notes that exposure to a level of arsenic above the MRL does not mean that adverse health effects will occur; rather they are screening values which, when exceeded, are intended to alert the public health professionals to examine the situation more closely. This advice is pertinent to both of the derived acute reference doses used in this study. More reliable indictors of arsenic toxicity are the biological exposure indices recommended by the Department of Labour (2010) and the WHO recommended action level for intervention of 100 μ g/L in urine (ATSDR, 2007).

4.0 Soil Ingestion Rates

Most children ingest small quantities of soil (e.g. < 50 mg/day), however small children (1-6 years old) can occasionally ingest much greater rates of soil (referred to as soil-pica). Children of less than 6 years of age have a tendency to place their hands and other objects in their mouths more frequently than do older children or adults (Paustenbach, et al, 2006). For the purposes of deriving an acute soil guideline value for short term exposure to arsenic an upper bound estimate of soil ingestion rate is required, rather than the average soil ingestion rate used to derive the SCSs for the contaminated soil NES (MfE, 2011).

The amount of soil ingested varies greatly from child to child and also from day to day for each child, and very few reliable studies of maximum children soil ingestion rates are available. Children of 18-24 months of age are generally

believed to ingest the most soil per kilogram of body weight (White, 1999; Calabrese et al, 1997a), based on the frequency of observed hand-to-mouth activities.

Studies cited in US EPA (2008) suggest that the upper 95th percentile for soil ingestion for children is approximately 208 mg/day with a maximum soil ingestion rate of 7,703 mg/day (US EPA, 2008). However, a recent meta-analysis of the same four mass-balance tracer studies cited in US EPA (2008) found the 95th percentile for normal children to be 79.4 mg/day (Stanek *et al*, 2011). This study excluded clear soil-pica children.

In one of the soil tracer studies cited by Stanek *et al*, (2011) a 2½ year-old girl was found to have ingested 20,000 to 22,000 mg on two of four days. During the same study a young girl was observed to have ingested between 1,000 and 2,000 mg of soil in a seven-day period (Calabrese & Staneck, 1998). Another study of pre-school children who lived near the Anaconda metal smelter in the US state of Montana found one soil-pica child with an estimated soil ingestion rate of between 719 and 2,828 mg/day depending on the soil tracer used (Stanek & Calabrese, 2000). A soil-tracer study undertaken in Jamaica of institutionalised children found that the soil-pica ingestion rate varied from 898 to 10,343 mg/day with an average soil ingestion rate of 5,000 mg (Wong, M.S. , 1988, in Calabrese & Stanek, 1993).

It is not clear how many children may display soil-pica behaviour and how frequently they may be engaged in ingesting large amounts of soils. In a number of different studies soil-pica behaviour has been estimated as occurring in between 4% to 21% of children evaluated (Barltrop, 1966; Robischon, 1971; Shellshear, 1975 and Vermeer & Frate, 1979). However, some of these estimates are based on observations of mouthing behaviour, rather than actual measurements of ingested soil. As pointed out by Calabrese *et al* (1997b), parental reports of high soil ingestion in their children was not borne out by soil tracer measurements of the same children.

Calabrese and Stanek (1998) used statistical techniques to estimate that 42% of preschool children will ingest more than 5,000 mg of soil once or twice during their preschool years, however the authors of this report admit that they may have overestimated the percentage of children who are engaged in soil-pica behaviour. They note:

While it is true that some children will ingest large amounts of soil, it is far from certain whether soil pica is behavior that only a small subgroup displays over a limited number of years (e.g., one to six) or whether most children, on occasion, display this behavior or some combination of both behavioural patterns.

In its *Child-Specific Exposure Factors Handbook* (US EPA, 2008), the US EPA estimates that the amount of soil ingested by a pica child is greater than 1g of soil per day, citing typical rates between 1,000 to 5,000 mg/day with a maximum reported soil-pica ingestion rate of 41,000 mg/day. The US EPA recommends a soil-pica ingestion rate of 1,000 mg/day for use in risk assessments (US EPA, 2008)⁴. The Washington Department of Health states that the range of commonly occurring short-term soil ingestion rates for children is 1,000 to 2,000 mg/day, with the upper 95th percentile of 1751 mg/day being the best estimate (White, 1999). These figures appear to be limited to only one study and therefore may not encompass the full range of soil ingestion rates displayed by pica children.

ATSDR recommends that in the absence of any reliable estimate of short term soil ingestion rates for children that a soil ingestion rate of 5 g/day should be used for deriving acute soil guideline values (ATSDR, 2000). It was noted at the workshop reported in ATSDR (2000) that the few reports of very high soil ingestion were from a few children in only two studies, with the highest rate reported being from a "developmentally disabled" child (the inference being this was not "true" soil-pica). Other criticism by workshop participants was that rates greater than 5000 mg/day were derived by considering only manganese as a tracer (ATSDR, 2000). Other tracers, particularly aluminium and silicon, are generally considered to be more reliable.

A02469101 R001 Final.doc, 15/11/2011

⁴ Reduced from a recommendation of 10,000 mg/day in 2000 and 2006 external review draft versions of US EPA (2008).

Based on the literature reviewed we believe the ATSDR recommendation of 5 g/day (5000 mg/day) provides a reasonable value for calculating the acute risk for a soil-pica child.

5.0 Calculations

We have carried out calculations using the equation given in Section 2 to derive two soil concentrations; the "Acceptable Acute Soil Concentration", at which the onset of observable health effects in a young child might occur, and a "Potentially Lethal Soil Concentration" at which death might occur, if the amount of soil for which the calculations have been carried out was in fact ingested.

We have carried out the calculations for five soil ingestion rates:

- 50mg/day, being the estimated rate for an average child used to derive the NES SCS (MfE, 2011), to demonstrate what concentrations can be tolerated in the short term for a "normal" child;
- ∴ 200 mg/day, being the value recommend by the US EPA (2008) as being an upper bound for a "normal" child (95th percentile, but probably higher than that);
- : 1000 mg/day, being a value at the lower end of the soil-pica range;
- : 5000 mg/day, being a value recommended as being reasonable for the soil-pica child; and
- 10,000 mg/day being towards the extreme end of the range for a soil-pica child, although not as high as some reported rates.

The calculations are set out in Table 1, below. An alternative set of calculations have been carried out for the lower MRL recommended by ATSDR (2007), as a means of comparison. These calculations are appended as Table 2.

Table 1: Recommended acceptable and potentially lethal soil concentrations at various ingestion rates								
	Soil Ingestion rate (mg/day)							
	50 200 1000 5000 1 10,00							
Acceptable Acute Soil Concentration ² (mg/kg)	3,900	975	195	39	20			
Potentially Lethal Soil Concentration ³ (mg/kg) 260,000 65,000 13,000 2,600 1,300								

Notes:

- 1. Bold indicates recommended values
- 2. Calculated for a reference dose of 0.015 mg/kg bw
- 3. Calculated for a potentially lethal dose of 1 mg/kg bw

It is beyond the scope of this report to compare the measured concentrations in any detail with the calculated values in Table 1. However, it is immediately apparent that, for the range of measured soil concentrations given in the introduction of this report, even at the upper bound of soil ingestion rates for the "normal" young child, the measured concentrations do not present an acute risk. Even the highest measured concentrations, found for soil below the surface, fall well short of lethal concentrations for the "normal" non-pica child.

However, for a soil-pica child the highest measured concentrations at the surface are above calculated concentrations for the onset of health effects at a soil ingestion rate of 1000 mg/day and, for our recommended pica ingestion rate of

5000 mg/day, many of the measured soil concentrations exceed the calculated concentration for the onset of effects. None of the measured surface concentrations come close to the calculated lethal soil concentration.

6.0 Other Factors

A variety of other factors may come into play in determining the actual likelihood of acute effects from soil ingestion. These include:

- the likelihood of a small child actually living on a property with sufficiently high concentrations **and** having a soilpica habit;
- : whether the arsenic is as bioavailable as the toxicity estimates assume; and
- : whether the arsenic is in as toxic a form as the toxicity estimates assume.

There is insufficient sampling data to have any certainty regarding the number of residential properties that might have sufficiently high concentrations to cause health effects from short-term ingestion of arsenic with soil. There are approximately 200 households in the area studied. Census data from 1996, 2001 and 2006^5 show an average of 27 children aged 0-4 in the four census "meshblocks" that cover the majority of the study area. If it is assumed that there is an even distribution of ages within this group and that children less than one year old are unlikely to be mobile enough or have the unsupervised opportunity to ingest large quantities of soil, then we are left with perhaps 20 children in the age range that may display pica behaviour.

Twenty six surface soil sample results are currently available over the study area. Of these, approximately 70% exceed the recommended acceptable soil concentration, but as noted above, none exceed the potentially lethal soil concentration. Ignoring any spatial trends that may exist, and assuming the soil samples are representative of the soil in general (a large assumption given the small number of samples), perhaps 140 residential properties have soil concentrations in excess of the acceptable concentration. It is not possible to determine without more detailed examination of the census data how many households the estimated 20 children aged 1-4 occupy. At most it will be 20 households, but quite possibly it will be a smaller number. Taking the maximum number, and assuming the children are evenly distributed about the area, then perhaps 70% of 20 children, or 14 children, are exposed to an acute risk if they have a pica habit.

The question then is; how many of those children will, in fact, have a soil-pica habit? As noted earlier, the literature is not very helpful. Estimates range from a small proportion (a few percent) regularly ingesting relatively large amounts of soil up to tens of percent a few times per year. On this basis, there might be less than an average of one child routinely exposing themselves to an acute risk up to perhaps five or six children.

The greatest concentrations exist in the eastern part of the subdivision. All the samples in this area exceeded the acceptable soil concentration for acute exposure at 5000 mg/day ingestion rate (39 mg/kg), with the lowest measured concentration being 46 mg/kg. Most samples in this eastern area were at least three times the acceptable concentration, with a couple in excess of eight times the acceptable concentration. An estimated six children aged 0-4 live in this area. This number is too small to assume there are babies, thus six children risk effects from acute exposure if they have a soil-pica habit. It is quite likely that no small children have this habit in the eastern area, but perhaps up to one or two children may ingest sufficient soil for that risk to be realised.

Clearly, as the soil concentrations increase the possibility of effects increases. However, if the current results are representative of the area as a whole, the likelihood of a child with the soil-pica habit actually living on one of the properties with the higher concentrations is small, perhaps negligible.

⁵ http://www.stats.govt.nz/Census/2006CensusHomePage/MeshblockDataset.aspx?tab=Download accessed 10 November 2011

The highest concentrations measured in surface soils over the study area are well short of the estimated potentially lethal concentration of 2,600 mg/kg. Thus symptoms of poisoning that might occur are expected to be at the lower end of the scale, perhaps gastrointestinal upsets, nausea and the like. Against the normal background of such symptoms from other causes, occurrences of poisoning from soil ingestion are less likely to be noticed.

It is well-known that arsenic in soil is not 100% bioavailable. The main studies from which the acute reference dose was derived (Tsuji et al, 2004) involved contamination of soy sauce, probably with calcium arsenate, and from intravenous treatment of leukaemia with arsenic-containing drugs. Calcium arsenate is highly soluble and presumably highly bioavailable, as will be the arsenic in the cancer treatment drugs. Bioavailability in soil, relative to soluble salts, measured using animal studies as reported in Juhasz et al (2003) and Ng et al (2010), ranges from a few percent to about 70%. The bioavailability very much depends on the original source and form of arsenic, the age of the contamination and the mineralogy of the soil. Mining sources of contamination often, but not always, have low bioavailability.

It would be speculative to attempt to assign a bioavailability factor to the Moanataiari soils, however it is a reasonable assumption that the bioavailability is not 100%. Given this, the acceptable concentrations for the soils will be higher by some unknown amount than the calculated values. In other words, the actual risk of acute effects from a pica child ingesting large amounts of soil will be even lower than that suggested above. That is not to say, however, that at the higher surface soil concentrations found mainly on the eastern side of the study area, adverse health effects would not occur should a child ingest excessive quantities of soil.

7.0 Conclusions

The scientific literature has few case studies providing robust assessments of the NOAEL/LOAEL and lethal doses for acute exposure to arsenic. A non-exhaustive review of the literature has found estimates for the reference dose at which no significant health effects are expected in the range 0.005 - 0.015 mg/kg-bw/day. The most robust assessment appears to be that of Tsuji et al (2004), who recommend 0.015 mg/kg-bw/day. This value has been chosen for this assessment. A similar review found lethal doses from short-term exposure in the range 0.6 - 3 mg/kg-bw/day. On-balance, a value of 1 mg/kg-bw/day seems reasonable and has been used in this report.

The greatest risk in the community arises from the accidental or deliberate ingestion of unusually high rates of soil by young children who exhibit behaviour known as soil-pica. Few robust studies of the behaviour exist, but the incidence is generally considered to be low, ranging from a very small number of children with a relatively frequent habit, to a larger number of children with a rare habit. Daily soil ingestion estimates range from 1000 mg to tens of thousands of mg. Government authorities in the United States variously recommend ingestion rates of 1000 and 5000 mg/day for risk assessment purposes. We have chosen 5000 mg/day as an appropriate rate for this assessment. This contrasts with the average rate of soil ingestion for a normal child of about 50 mg/day and an upper bound (at least 95th percentile) for a normal child of about 200 mg/day.

We have used the selected reference and lethal doses and soil ingested rates to calculate acceptable acute soil concentrations and potentially lethal soil concentrations. At the selected soil-pica ingestion rate and a reference dose of 0.015 mg/kg-bw/day, the calculated acceptable soil concentration threshold, assuming 100% bioavailability, is 39 mg/kg. At the selected pica ingestion rate and the potentially lethal dose of 1 mg/kg-bw, the potentially lethal soil concentration is 2,600 mg/kg.

The acceptable soil concentration is lower than some of the concentrations measured within surface soil at Moanataiari, indicating a potential acute risk. However, the calculated potentially lethal soil concentration is much higher than any surface soil concentration measured to date at Moanataiari, indicating minimal risk of a lethal dose. Higher concentrations than the potentially lethal concentration have been measured at 1 m below the ground, but contact with this soil is much less likely than surface soil.

The calculated acceptable and potentially lethal soil concentrations assume 100% bioavailability. Arsenic in soil is known to range from a few percent up to about 70% bioavailable relative to ingestion of soluble salts. Unfortunately, the bioavailability of arsenic in the Moanataiari soil is not known and cannot be readily measured with any certainty. The best that can be said on the current information is that the calculated soil concentrations are low (conservative) by a factor of between about 1.4 and 25 times.

Population statistics and the prevalence of soil-pica in children suggests that very few if any children at Moanataiari will actually ingest dangerous amounts of soil, but the risk cannot be dismissed.

As the measured concentrations exceed the Soil Concentration Standard for arsenic developed for the new soil contamination National Environmental Standard (MfE, 2011), a risk requiring management is indicated for long-term exposure. Further sampling is required to better understand the range of arsenic concentrations and spatial distribution over the Moanataiari area in general and within individual properties, and therefore better understand and manage the risk to residents.

We trust this assessment provides the information you were seeking. Should you have any queries please do not hesitate to contact one of the undersigned.

Yours sincerely

PATTLE DELAMORE PARTNERS LIMITED

Written by:

Andrew Rumsby

Environmental Scientist

Reviewed and approved by:

Graeme Proffitt

Director

References

ATSDR, 2000, Summary Report for the ATSDR Soil-Pica Workshop, June 2000, Atlanta, Georgia. Agency, Agency for Toxic Substances and Disease Registry, http://www.atsdr.cdc.gov/child/soilpica.html. Accessed 9 November 2011.

ATSDR, 2007, *Toxicological Profile for Arsenic*. US Department of Health Services, Agency for Toxic Substances and Disease Registry, http://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=22&tid=3. Accessed 10 November 2011.

Barltrop, D. 1966, The Prevalence of Pica. American Journal of Diseases and Childhood, 112, pp116-123.

Calabrese, E. J. and Staneck, E. J. 1993. Soil Pica: Not a Rare Event. *Journal of Environmental Science and Health*, A28, pp 373-384.

Calabrese, E. J., Stanek, E. J., James, R. C., and Roberts, S. M., 1997a, Soil Ingestion: A Concern for Acute Toxicity in Children. *Environmental Health Perspectives*, 105, pp 1354-1358.

Calabrese, E. J., Stanek, E. J., & Barnes, R., 1997b, Soil Ingestion Rates in Children Identified by Parental Observation as Likely High Soil Ingesters. *Journal of Soil Contamination*, 6(3):271-279.

Calabrese E. J. & Stanek E. J., 1998, Soil Ingestion Estimation in Children and Adults: A Dominant Influence in Site-Specific Risk Assessment. *Environmental Law Reporter*, 28, pp 10660-10671.

Department of Labour, 2010, Workplace Exposure Standards and Biological Exposure Indices, Effective from December 2010.

Juhasz A., Smith E. & Naidu R., 2003, *Estimation of human bioavailability of arsenic in contaminated soils*, Proceedings of the 5th national workshop on the assessment of site contamination, Environmental Protection and Heritage Council.

Kingston R. L., Hall, S., Sioris L., 1993, Clinical Observations and Medical Outcomes in 149 cases of Arsenate Ant Killer Ingestion. *Journal of Toxicology –Clinical Toxicology*, 31, pp 581-591.

MfE, 2011, Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health. Ministry for the Environment, Wellington.

Mazumder, D.N.G., Haque, R., Ghosh, N., De, K.D., Santra, A., Chakrabortyc, D., & Smith, A. H., 1998, Arsenic levels in drinking water and the prevalence of skin lesions in West Bengal, India, *International Journal of Epidemiology*, 27:871-877

Ng, JC, Juhasz AL, Smith E & Naidu R, 2010, Contaminant bioavailability and bioaccessibility. Part 1: A scientific and technical review, Technical Report No14, CRC CARE, Adelaide.

Paustenbach, D. J., Fehling, K., Scott, P., Harris, M. & Kerger, B., 2006, Identifying Soil Cleanup Criteria for Dioxins in Urban Residential Soils: How have 20 years of Research and Risk Assessment Experience Affected the Analysis? *Journal of Toxicology and Environmental Health*, Part B. 9, 2, pp 87-145.

Ratnaike, R. N., 2003, Acute and Chronic Arsenic Toxicity. Postgraduate Medical Journal, 79, pp 391-396.

Robischon, P., 1971, Pica Practice and other Hand-to mouth Behaviour and Children's Development Level. *Nursing Research*, 20, pp 4-16.

Schuhmacher-Wolz, U., Dieter, H., Klien, D., and K. Schneider, 2009, Oral Exposure to Inorganic Arsenic: Evaluation of its Carcinogenic and Non-carcinogenic Effects. *Critical Reviews in Toxicology*, 39, 4, pp 271-298.

Shellshear, I. D., 1975, Environmental Lead Exposure in Christchurch Children: Soil Lead a Potential Hazard. *New Zealand Medical Journal*, 81, pp 382-386.

Stanek, E. J. & Calabrese, E. J., 2000, Daily Soil Ingestion Estimates for Children at a Superfund Site. *Risk Analysis*, 20, 5, pp 627-635.

Stanek, E. J., Calabrese, E. J. & Xu B, 2011, Meta-analysis of Mass-Balance Studies of Soil Ingestion in Children, *Risk Analysis*, on-line early-view edition: http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1539-6924/earlyview accessed 10 November 2011.

Tsuji, J. S, Benson, R, Schoof, R. A and Hook, G. C, 2004, Health effect levels for risk assessment of childhood exposure to arsenic. *Regulatory Toxicology and Pharmacology* 39, pp 99–110.

US EPA, 2001, *Derivation of Acute and Subchronic Oral Reference Doses for Inorganic Arsenic*, United States Environmental Protection Agency Region 8.

US EPA, 2005, Summary Report of the U.S. EPA Colloquium on Soil/Dust Ingestion Rates and Mouthing Behavior for Children and Adults. National Center for Environmental Assessment U.S. Environmental Protection Agency,

Washington, DC. http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=146585#Download accessed 11 November 2011.

US EPA, 2008, Child-specific Exposure Factors Handbook.

http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=199243. Accessed 10 November 2011.

Vermeer, D. E. and Frate D. A., 1979, Geophagia in Rural Mississippi: environmental and Cultural Contexts and Nutritional implications. *American Journal of Clinical Nutrition*, 32, pp 2129-2135.

White, J., 1999, *Hazards of Short-Term Exposure to Arsenic Contaminated Soil*. Office of Environmental Health Assessment Services, Washington State Department of Health, January 1999.

http://www.doh.wa.gov/ehp/oehas/publications_pdf/finacute.pdf, Accessed 10 November 2011.

WHO (World Health Organization), 2001, *Environmental Health Criteria 224: Arsenic and Arsenic Compounds* http://www.who.int/ipcs/publications/ehc/ehc_224/en/. Accessed 12 November 2011.

Wilson, S. C., Lockwood, P. V., Ashley, P. M. and Tighe, M., 2010, The Chemistry and Behaviour of Antimony in the Soil Environment with Comparison to Arsenic: A Critical Review. *Environmental Pollution*, 158, pp 1169-1181.

Wong, M.S., 1988, *The Role of Environmental and Host Behavioural Factorsiln Determining Exposure to infection with* Ascaris lumbricoides *and* Trichuris trichiura. Ph.D. Thesis, Faculty of Natural Sciences, University of the West Indies.

Table 2: Alternative acceptable and potentially lethal soil concentrations at various ingestion rates								
	Soil Ingestion rate (mg/day)							
	50	200	1000	5000 ¹	10,000			
Acceptable Acute Soil Concentration ² (mg/kg)	1,300	325	65	13	7			
Potentially Lethal Soil Concentration ³ (mg/kg) 260,000 65,000 13,000 2,600 1,300								

Notes:

- 1. Bold indicates recommended values
- 2. Calculated for a reference dose of 0.005 mg/kg bw
- 3. Calculated for a potentially lethal dose of 1 mg/kg bw